Unit 2 - Basics of
 Probability, Conditional Probability, MAP Principle

Course outline

How to access the portal

Basics of Probability, Conditional Probability, MAP Principle

Basics - Sample Space and Events

Axioms of Probability

Conditional Probability -
Mary-PAM Example

Independent
Events - MaryPAM Example

Independent
Events - Block
Transmission
Example
Independent
Events -
Multiantenna
Fading Example
Quiz :
Assignment 1
Assignment-1
Solutions

Random

Variables,
Probability
Density
Functions,
Applications in
Wireless
Channels

Basics of
Random
Processes,

Assignment 1

The due date for submitting this assignment has passed. Due on 2017-02-07, 23:59 IS As per our records you have not submitted this assignment.

1) Q1. The first axiom of probability states

$$
\begin{aligned}
& P(A) \leq 1 \\
& P(A) \geq 0 \\
& P(A \cup B)=P(A)+P(B) \\
& P(A \mid B)=P(A \cap B) / P(B)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$P(A) \geq 0$
2) Q 2. For two events A, B, it is always true that

1 point

$$
\begin{aligned}
& P(A)+P(B) \geq 1 \\
& P(A)+P(B) \leq 1 \\
& P(A)-P(A \cup B) \leq P(A \cap B) \\
& P(A \mid B) \leq P(A)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$P(A)-P(A \cup B) \leq P(A \cap B)$
3) Q3. The levels of a M-ary PAM constellation with $M=8$ are

1 point
$\{-7 \alpha,-5 \alpha,-3 \alpha,-\alpha, \alpha, 3 \alpha, 5 \alpha, 7 \alpha\}$. The probabilities of these symbols are related as
$P((2 i-1) \alpha)=2 P((2 i-3) \alpha)$, for $-2 \leq i \leq 4$. The probability $P(5 \alpha)$ is,

- $1 / 8$
- $1 / 16$
-64/255
- $1 / 255$

Wireless Fading
Channel

Modeling

Gaussian
Random
Process, Noise,
Bit-Error and
Impact on
Wireless
Systems

No, the answer is incorrect.
Score: 0
Accepted Answers:
64/255
4) Q4. The levels of a M-ary PAM constellation with $M=8$ are

1 point
$\{-7 \alpha,-5 \alpha,-3 \alpha,-\alpha, \alpha, 3 \alpha, 5 \alpha, 7 \alpha\}$. The probabilities of these symbols are related as
$P((2 i-1) \alpha)=2 P((2 i-3) \alpha)$, for $-2 \leq i \leq 4$. Consider two events
$A=\{-7 \alpha,-3 \alpha, \alpha\}, B=\{-5 \alpha,-3 \alpha, 7 \alpha\}$. The probability $P(A \cup B)$ is,

```
63/255
3/8
- \(1 / 127\)
-151/255
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
151/255
5) Q5. The levels of a M-ary PAM constellation with $M=8$ are
$\{-7 \alpha,-5 \alpha,-3 \alpha,-\alpha, \alpha, 3 \alpha, 5 \alpha, 7 \alpha\}$. The probabilities of these symbols are related as $P((2 i-1) \alpha)=2 P((2 i-3) \alpha)$, for $-2 \leq i \leq 4$. Consider two events $A=\{-3 \alpha,-\alpha, \alpha, 3 \alpha\}, B=\{-7 \alpha,-3 \alpha, \alpha, 5 \alpha\}$. The probability $P(A \mid B)$ is,

4/17
85/255
22/255
19/127
No, the answer is incorrect.
Score: 0

Accepted Answers:

4/17
6) Q6. Two events A, B are independent if and only if,

1 point

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A) P(B) \\
& P(A \mid B)=P(B) \\
& P(A \cap B) / P(A)=P(A \mid B) \\
& \text { All of the above }
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
P(A \cup B)=P(A)+P(B)-P(A) P(B)
$$

7) Q7. The levels of a M-ary PAM constellation with $M=8$ are
$\{-7 \alpha,-5 \alpha,-3 \alpha,-\alpha, \alpha, 3 \alpha, 5 \alpha, 7 \alpha\}$. The probabilities of these symbols are related as $P((2 i-1) \alpha)=2 P((2 i-3) \alpha)$, for $-2 \leq i \leq 4$. Let x_{1}, x_{2} denote the symbols at time instants 1 , 2 respectively. Consider two events $A=\{-3 \alpha,-\alpha, \alpha, 3 \alpha\}, B=\{-7 \alpha,-3 \alpha, \alpha, 5 \alpha\}$. If the symbols at different time instants are independent, then probability $P\left(\left(x_{1} \in A\right) \cap\left(x_{2} \in B\right)\right)$ is,
```
3/255
```

4/51
4/85
-33/255
No, the answer is incorrect.
Score: 0

Accepted Answers:

8) Q8. The levels of a M-ary PAM constellation with $M=8$ are

1 point $\{-7 \alpha,-5 \alpha,-3 \alpha,-\alpha, \alpha, 3 \alpha, 5 \alpha, 7 \alpha\}$. The probabilities of these symbols are related as $P((2 i-1) \alpha)=2 P((2 i-3) \alpha)$, for $-2 \leq i \leq 4$. Let x_{1}, x_{2} denote the symbols at time instants 1 , 2 respectively. Consider two events $A=\{-3 \alpha,-\alpha, \alpha, 3 \alpha\}, B=\{-7 \alpha,-3 \alpha, \alpha, 5 \alpha\}$. If the symbols at different time instants are independent, then probability $P\left(\left(x_{1} \in A\right) \cup\left(x_{2} \in B\right)\right)$ is,151/255
3/255

- 17/127

25/51
No, the answer is incorrect.
Score: 0
Accepted Answers:
25/51
9) Q9. The levels of a M-ary PAM constellation with $M=8$ are $\{-7 \alpha,-5 \alpha,-3 \alpha,-\alpha, \alpha, 3 \alpha, 5 \alpha, 7 \alpha\}$. The probabilities of these symbols are related as $P((2 i-1) \alpha)=2 P((2 i-3) \alpha)$, for $-2 \leq i \leq 4$. Let x_{1}, x_{2} denote the symbols at time instants 2 respectively. Consider two events $A=\{-5 \alpha,-\alpha, \alpha, 5 \alpha\}, B=\{-7 \alpha,-3 \alpha, 3 \alpha, 7 \alpha\}$. If the symbols at different time instants are independent, then probability $P\left(\left(x_{1} \in A\right) \mid\left(x_{2} \in A \cup B\right)\right)$ is,
2/17
\square 4/17
\square 6/17
$\square 8 / 17$

No, the answer is incorrect.
Score: 0
Accepted Answers:
6/17
10Q10. The levels of a M-ary PAM constellation with $M=8$ are
1 point
$\{-7 \alpha,-5 \alpha,-3 \alpha,-\alpha, \alpha, 3 \alpha, 5 \alpha, 7 \alpha\}$. The probabilities of these symbols are related as
$P((2 i-1) \alpha)=2 P((2 i-3) \alpha)$, for $-2 \leq i \leq 4$. The symbols at different time instants are independent. Also, for each symbol x, the probability of symbol error e is $P(e \mid x)=N_{x} / 10$, where N_{x} is the number of neighbors of x. For example, $-3 \alpha, \alpha$ are the neighbors of $-\alpha$. What is the average probability of symbol error?

67/850
-87/850
107/850
127/850
No, the answer is incorrect.
Score: 0
Accepted Answers:
127/850
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

A project of
NPTEL
National Programme on Technology Enhanced Learning

In association with

Funded by
Government of India Ministry of Human Resource Development

Powered by

