Unit 11 - Binary
 Decision Diagram and Symbolic model checking

Course outline

How to access the portal ?

Introduction and
Overview of VLSI Design

Scheduling in High-Level Synthesis

Resource
Sharing and
Binding in HLS

Logic Synthesis

Physical Design

Introduction to
Verification
Techniques

Syntax and semantics of CTL,
Equivalences
between CTL
formulas and
Introduction to
Model Checking

CTL Model

checking
Algorithms and
Introduction to
Binary Decision
Diagrams

Binary Decision
Diagram and Symbolic model checking

Ordered Binary Decision Diagram (OBDD)

Week 8--Assignment

The due date for submitting this assignment has passed. Due on 2016-09-18, 23:58 IST.
Submitted assignment

1) Let B_{X} and B_{Y} are two ROBDDs representing Boolean function

2 points
$f(a, b, c)=a{ }^{\prime} b+a c+b c$ ' with variable ordering $<a, b, c>$ and $<c, a, b>$ respectively. Count the number of nodes in B_{X} and B_{Y}.
$B_{X}=5, B_{Y}=5$
$B_{X}=5, B_{Y}=6$
$B_{X}=6, B_{Y}=5$
($B_{X}=6, B_{Y}=6$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$B_{X}=6, B_{Y}=5$
2) Consider the Boolean function of 2-bit comparator, $f\left(a_{1}, a_{2}, b_{1}, b_{2}\right)=\left(a_{1}\right.$ XNOR 2 points $\left.\boldsymbol{b}_{1}\right) \cdot\left(a_{2}\right.$ XNOR $\left.b_{2}\right)$. Draw ROBDD to represent \boldsymbol{f} with variable ordering $<\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{1}, \mathrm{~b}_{2}>$ and find the number of nodes in it.

- 10
- 11
- 12
- 14

No, the answer is incorrect.
Score: 0
Accepted Answers:
11
3) Let $f(a, b)=a^{\prime} b^{\prime}+a^{\prime} b+a b^{\prime}+a b$ be a Boolean function. Which of the followings is $\mathbf{1}$ point true?
\boldsymbol{f} is independent of only a
\boldsymbol{f} is independent of only b
\boldsymbol{f} is independent of both a and b
None of the above
No, the answer is incorrect.
Score: 0

Operation On OBDD

OBDD for state transition systems

Symbolic model checking

Quiz : Week 8-Assignment

Introduction to Digital Testing

Fault Simulation and Testability Measures

Combinational
Circuit Test
Pattern
Generation

Sequential Circuit Testing and Scan Chains

Built In Self Test (BIST)

VLSI Design Verification and test - Unit 11 - Binary Decision Diagram and Symbolic model checking Accepted Answers:
\boldsymbol{f} is independent of both a and b
4) Let $f(a, b, c)=a ' b++a b c+a^{\prime} c$ ' be a Boolean function. What is the negative

1 point Shannon cofactor of \boldsymbol{f} with respect to \boldsymbol{c} ?
a^{\prime}
b^{\prime}
c^{\prime}
a'b'+ab
No, the answer is incorrect.
Score: 0
Accepted Answers:
a'
5) Let B_{f} is a ROBDD of Boolean expression f. If B_{f} contains only one node and 1 point that is labeled with 1 , then which of the followings is true for \boldsymbol{f}.

- is not a valid Boolean expression
\boldsymbol{f} is not a satisfiable Boolean expression
\boldsymbol{f} is a valid Boolean expression
None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
\boldsymbol{f} is a valid Boolean expression

6) Let B_{f} be a ROBDD of a Boolean expression f. If there exists 4 paths to terminal 1 point node 1 and 3 paths to terminal node 0 in B_{f}, then what can we say about \boldsymbol{f}.
\boldsymbol{f} is valid but not satisfiable
\boldsymbol{f} is valid and satisfiable
\boldsymbol{f} is neither valid nor satisfiable
\boldsymbol{f} is not valid but satisfiable
No, the answer is incorrect.
Score: 0
Accepted Answers:
\boldsymbol{f} is not valid but satisfiable
7) Let B_{f} be a OBDD representing Boolean function $f(a, b, c)=a^{\prime} b+b^{\prime} c$ and B_{g} be 3 points another OBDD representing Boolean function $g(a, b, c)=a ' b$. Perform XOR operation on B_{f} and B_{g} (i.e., $B_{X O R}=B_{f} X O R B_{g}$) and reduce it. Find the number of nodes and number of satisfying assignments in $B_{\text {XOR }}$. Assume order of variables in all cases is <a, $b, c>$.

Nodes=4, Satisfying assignments $=2$
Nodes=6, Satisfying assignments $=2$
Nodes=8, Satisfying assignments $=3$
Nodes=6, Satisfying assignments $=3$
No, the answer is incorrect.
Score: 0

Accepted Answers:

Nodes=4, Satisfying assignments $=2$
8) Consider the Boolean function $f(a, b, c, d)=a b^{\prime} c+a b+c^{\prime} d+b c d$. Construct 3 points ROBDD, B_{f}, to represent \boldsymbol{f}. Construct ROBDDs B_{X} and B_{Y} to represent restrict ($\mathbf{0}, \boldsymbol{c}, \boldsymbol{B}_{f}$) and restrict(1, $\left.c, B_{f}\right)$, respectively. Finally, construct ROBDD, B_{Z}, to represent exists(c, B_{f}) using B_{X} and B_{Y}. Find the number of nodes in B_{f}, B_{X}, B_{Y} and B_{Z}. Assume order of variables in all cases is <a, $b, c, d>$.
$B_{f}=8, B_{X}=5, B_{Y}=5, B_{Z}=4$
$B_{f}=8, B_{X}=6, B_{Y}=6, B_{Z}=5$
$B_{f}=8, B_{X}=5, B_{Y}=5, B_{Z}=8$
None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
$B_{f}=8, B_{X}=5, B_{Y}=5, B_{Z}=4$
9) Let $f(x, y)=x\left(y+x^{\prime}\right)$ be a Boolean function. Find the restrictions of f with 1 point respect to \boldsymbol{x}.
$0, x y$
$x^{\prime}, x y$
$0, y$
$x^{\prime}, x+y$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$0, y$

> Previous Page

A project of
NPTEL

In association with

Funded by
Government of India
Ministry of Human Resource Development

Powered by

