

https://onlinecourses-archive.nptel.ac.in/noc18_ph16/unit?unit=114&assessment=119

27/07/2020

freedom control design for robustness

Week 7: Quantitative feedback theory (Part 1/2)

Week 8 : Quantitative feedback theory (Part 2/2)

Lecture Notes(Week 1 -8)

Week 9: **Fundamental** properties of feedback systems

- Fundamental properties of the loop gain (part 1/2)
- Fundamental properties of the loop gain (part 2/2)
- Ideal Bode Characteristic (Part 1/2)
- Ideal Bode Characteristic (Part 2/2)
- OQuiz : Week 9 -Assessment

O Week 9: Lecture Notes

Week 10 :Nonminimum phase system

Week 11: Unstable systems

Week 12 Describing functions

Assignment solutions

Control System Design - - Unit 15 - Week 9: Fundamental properties of feedback systems

π

3) The Bode plot for the open loop gain of a unity feedback system is shown below:

Identify the approximate values of open-loop phase for $\omega \ll 10$ and $\omega \gg 10$.

0 and $-\pi$ respectively. 0 and $-\pi/2$ respectively. $-\pi/2$ and $-\pi$ respectively. $-\pi$ and $-\pi/2$ respectively.

No, the answer is incorrect. Score: 0

Accepted Answers: 0 and $-\pi$ respectively.

-3 5π

1 point

4) Calculate the approximate value of open-loop phase at $\omega = 1 rad/s$ for the system specified in Q3.

2	
5π	
$\frac{-2}{2}$	
$ \begin{array}{c} \frac{2}{5\pi} \\ -2}{3\pi} \\ -2}{5\pi} \end{array} $	
-2	
$\overline{5\pi}$	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
$\frac{-2}{2}$	
5π	
5) What information does the ideal bode characteristic plot give? 1	ooint
The minimum necessary gain and phase margins.	
The maximum possible gain cross-over frequency.	
The minimum possible gain cross-over frequency.	
The optimal relative degree of the loop gain.	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
The minimum possible gain cross-over frequency.	
6) The open-loop magnitude for a plant P(s) has to be maintained at 40 dB for frequency 1 µ	point
$\omega \leq 10 \ rad/s$. Further, it is required that the phase margin should be $\frac{\pi}{4}$. Calculate the minimum v	alue
of gain cross-over frequency:	

- 30 rad/s
- 107 rad/s
- 39 rad/s
- 76 rad/s

Control	System Design Unit 15 - Week 9: Fundamental properties of feedback systems	
No, ti Score	he answer is incorrect. e: 0	
Acce 107 r	pted Answers: ad/s	
	ntify the ideal bode characteristic for the loop gain L(s)=CP(s) obtained in Q6 from the given below:	1 poi
0		
<u> </u>	he answer is incorrect. e: 0	
	pted Answers:	
Determi	certain feedback control system, it is desired to maintain the loop gain constant at 75 dB rad/s. The phase margin of the system should be 40° and gain margin should be 10 dB ne the value of requisite roll-off (in dB/decade) after 43 rad/s that would lead to minimum ver frequency.	1 poi
0	-31.11 dB/decade 31.11 dB/decade -41.11 dB/decade -15.55 dB/decade	
No, ti Score	he answer is incorrect. e: 0	
Acce	pted Answers: 1 dB/decade	
	Q8, find out the frequency ($\omega_{gc}^{'}$) till which the slope should be maintained to obtain the Gain margin.	1 poi
\bigcirc		
65.	$0 \times 10^3 \ rad/s$	
75.	$2 \times 10^3 \ rad/s$	
20.	$8 \times 10^3 \ rad/s$	
11.	$6 \times 10^3 \ rad/s$	
No, ti Score	he answer is incorrect.	
	pted Answers:	
	$\times 10^3 rad/s$	
	18, if high frequency roll-off is -100 dB/decade then calculate the minimum frequency (to which loop shape will have to be preserved.	1 po
3 7.	$5 \times 10^3 \ rad/s$	
0 37.	$2 \times 10^3 \ rad/s$	

 $45.2 \times 10^3 \ rad/s$

 54.2×10^3 rad/s

Control System Design - - Unit 15 - Week 9: Fundamental properties of feedback systems No, the answer is incorrect. Score: 0 Accepted Answers: $37.2 \times 10^3 \ rad/s$

Previous Page

f ✓ ► in 8+

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with

Funded by

Government of India Ministry of Human Resource Development

