

reviewer3@nptel.iitm.ac.in ▼

Courses » Control System Design

Announcements

Course

Ask a Question

Progress

FAQ

Unit 9 - Week 5: Control of systems with some known parameters, Introduction to 2-degree of freedom control

Course outline

How to access the portal

Prerequisite Assignment

MATLAB
Download and
Introduction

MATLAB Learning Modules

Week 1: Linear System Theory, Fourier and Laplace Transforms

Week 2: Introduction to feedback control, Nyquist stability theory

Week 3 : Bode plots, Steps for performing control design, General controllers

Week 4: Bodeplot and rootlocus based control design

Week 5: Control of systems with some known parameters, Introduction to 2degree of freedom control

 Control of systems with some known

Week-5 Assessment

The due date for submitting this assignment has passed. Due on 2018-09-12, 23:59 IS As per our records you have not submitted this assignment.

Week-5 Assessment

1) Consider a plant whose transfer function is given by

1 point

 $P(s) = \frac{5}{(s/10+1)(s/100+1)}$. A unity feedback control system is employed to perfectly track a DC reference and to perfectly reject sinusoidal output disturbance of frequency 1 rad/s. Which of the following controllers C(s) would be appropriate to achieve this desired performance while ensuring a stable closed loop system? (Hint: Use Bode plot to check for stability)

$$C(s) = \frac{(s+1)^2}{s(s^2+1)}$$

$$C(s) = \frac{(s+1)}{s(s^2+1)}$$

$$C(s) = \frac{(s+1)^2}{s^2(s^2+1)}$$

$$C(s) = \frac{(s+1)}{s^2(s^2+1)}$$

No, the answer is incorrect. Score: 0

Accepted Answers:

$$C(s) = \frac{(s+1)^2}{s(s^2+1)}$$

2) Consider a plant whose transfer function is given below

2 points

$$P(s) = \frac{10}{(s/10+1)(s/50+1)}$$

Although the nominal gain of the plant is 10, this could change by a factor of 2, i.e., it could drift to any value between 5 and 20. The plant is expected to track a reference r(t)=sin(t) perfectly. A unity feedback control system is employed to achieve the objective. Which of the following controllers C(s) would be appropriate to achieve the desired performance while assuring a stable closed loop operation? (Hint: Use Bode plot to check for stability).

parameters (Part 1/2)

- Control of systems with some known parameters (Part 2/2)
- Limitations of 1degree of freedom control
- Introduction to 2-degree of freedom control
- Quiz : Week-5Assessment

Week 6: 2-Degree of freedom control design for robustness

Week 7: Quantitative feedback theory (Part 1/2)

Week 8: Quantitative feedback theory (Part 2/2)

Lecture Notes(Week 1 -8)

Week 9: Fundamental properties of feedback systems

Week 10 :Nonminimum phase system

Week 11: Unstable systems

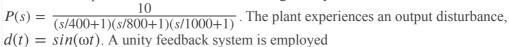
Week 12 Describing functions

Assignment solutions

$$C(s) = \frac{10}{s^2 + 1}$$

$$C(s) = \frac{(s+2)^2}{s^2+1}$$

$$C(s) = \frac{s^2 + 2}{s^2 + 1}$$



No, the answer is incorrect.

Score: 0 Accepted Answers:

$$C(s) = \frac{(s+2)^2}{s^2+1}$$

3) Consider a plant whose transfer function is given by

- (i) To track a DC reference perfectly.
- (ii) To reject the disturbance d(t) by at least 98% for $\omega < 16 \ rad/s$.
- (iii) To perfectly reject the disturbance d(t) at $\omega = 16 \ rad/s$.
- (iv) To perfectly track the reference input $r(t) = sin(\omega_1 t)$, where $\omega_1 = 32 \ rad/s$.

Which of the following controllers C(s) would be appropriate to achieve the desired performance and also ensures the stability of the closed-loop system? (Hint: Use Bode plot to check for stability)

$$C(s) = 80/s$$

$$C(s) = \frac{80(s/450+1)(s+30)^2}{s(s^2+32^2)}$$

$$C(s) = \frac{80(s/450+1)(s+10)^2(s+30)^2}{s(s^2+16^2)(s^2+32^2)}$$

$$C(s) = \frac{80(s+10)^2(s+30)^2}{s(s^2+16^2)(s^2+32^2)}$$

No, the answer is incorrect.

Score: 0

Accepted Answers

$$C(s) = \frac{80(s/450+1)(s+10)^2(s+30)^2}{s(s^2+16^2)(s^2+32^2)}$$

4) A unity feedback control system has a plant transfer function P(s) = 1/(s+5). A PI controller $C(s) = K_P + K_I/s$ is employed to ensure the damping factor ζ & the natural frequency ω_n of the closed loop system is 0.3 & 10 rad/s respectively. Determine the value of proportional gain K_P & integral gain K_I of the controller.

$$K_P = 1, \ K_I = 10$$

$$K_P = 10, K_I = 10$$

$$K_P = 100, K_I = 10$$

 $K_P = 1, K_I = 100$

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $K_P = 1, K_I = 100$

- 5) Identify the correct statement regarding the limitation of one degree of freedom 1 point control.
- (i) Large variation in plant parameters results in significant change in transient response.
- (ii) Sensitivity function 'S' and transmission function 'T' can't be independently controlled.
 - (iii) Sensitive to measurement noise
 - (iv) Sensitive to disturbances
 - o i,ii,iv
 - ii,iii,iv
 - i,ii,iii
 - i,iii,iv

No, the answer is incorrect.

Score: 0

Accepted Answers:

i,ii,iii

- 6) Under a situation where there is significant variation in a minimum phase plant's **1** point parameter, a closed-loop control system is applied in order to achieve a specified closed-loop dynamics even in the face of this variation. Which of the following control strategies should be employed to achieve insensitivity to plant's parameter variation while attaining the desired closed-loop performance.
 - Employ 2 DOF control such that the controller transfer function possess zero near the desired closed-loop pole position and the pre-filter transfer function possess pole exactly at the added zero.
 - Employ 2 DOF control such that the controller transfer function possess pole near the desired closed-loop pole position and the pre-filter transfer function possess zero exactly at the added pole.
 - Employ 1 DOF and make sure that the magnitude of the open loop transfer function is as high as possible at the desired closed-loop pole.
 - Both option a and c

No, the answer is incorrect.

Score: 0

Accepted Answers:

Employ 2 DOF control such that the controller transfer function possess zero near the desired closed-loop pole position and the pre-filter transfer function possess pole exactly at the added zero.

7) What should be the structure of the pre-filter transfer function F(s) for the given **1 point** 2 DOF control system so as to reject a white noise while simultaneously achieve tracking of faster reference signals?

$$F(s) = (s/K_0K_i + 1)/(s/K_2 + 1); K_2 >> K_0K_i$$

$$F(s) = (s/K_i + 1)/(s/K_2 + 1); K_2 >> K_i$$

$$F(s) = (s/K_2 + 1)/(s/K_0K_i + 1); K_2 >> K_0K_i$$

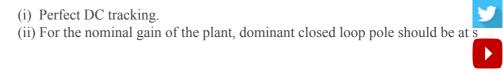
$$F(s) = (s/K_0K_i + 1)/(s/K_2 + 1); K_2 << K_0K_i$$

f

y

in

No, the answer is incorrect.


Score: 0

Accepted Answers:

$$F(s) = (s/K_0K_i + 1)/(s/K_2 + 1); K_2 >> K_0K_i$$

⁸⁾ Consider a plant whose transfer function is given by $P(s) = \frac{20}{(s+20)}$. The 1 point gain of the plant varies from 4 to 100 while the nominal value of the gain is 20. A unity feedback control system with a controller C(s) along with a pre-filter F(s) is designed to achieve the following specifications:

The transfer function of the designed controller is $C(s) = \frac{200(s+20)(s+z)}{s(s+130)}$. Identify the value of z among the following:

- 0 30.75
- 33

= -30.

- 31.5
- 32.6

No, the answer is incorrect.

Score: 0

Accepted Answers:

30.75

9) Find out the location of the dominant closed loop pole for the control system 1 point designed in Question number 8 when the plant gain is 100.

- \circ s = -30.598
- \circ s = -30.669
- \circ s = -30.225
- \circ s = -30.426

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$s = -30.598$$

10 Identify the appropriate transfer function for the pre-filter F(s) designed in 1 point Question number 8 which ensures that the dominant closed loop pole does not get cancelled due to the open loop zero (z) of the CP(s).

 $F(s) = \frac{30.75}{s + 30.75}$ $F(s) = \frac{33}{s+33}$

$$F(s) = \frac{31.5}{s + 31.5}$$

 $F(s) = \frac{36}{s+36}$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$F(s) = \frac{30.75}{s + 30.75}$$

Previous Page

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Funded by

Government of India Ministry of Human Resource Development

Powered by

