
NPTEL » Fiber Optics

Mentor

Unit 5 - Week 4


```
Due on 2020-02-26, 23:59 IST.
                                                                                                                                                           1 point
                                                                                                                                                           1 point
  3) Consider a dielectric step-index asymmetric planar waveguide with n_f = 1.475, n_s = 1.450, n_c = 1, d = 4 \mu m at \lambda_0 = 1.06 \mu m. The 1 point
  4) A dielectric step index symmetric planar waveguide n_1 = 1.48, n_2 = 1.46, d = 5 \mu m supports TE<sub>0</sub> and TE<sub>1</sub> modes at
                                                                                                                                                           1 point
\lambda_0 = 1.06 \ \mu m. The propagation constant for TE<sub>1</sub> mode is 8.7268 \mu m^{-1}. At z = 0, the electric field in the guiding film is given by
E_y(x) = 1.375 \times 10^4 \cos(\kappa_0 x) e^{i\omega t} + 1.309 \times 10^4 \sin(\kappa_1 x) e^{i\omega t} V/m. What is the power carried by TE<sub>1</sub> mode?
    0.01 W/m
    0.08 W/m
    1.13 W/m
    2.21 W/m
   No, the answer is incorrect.
   Score: 0
   Accepted Answers:
   1.13 W/m
  5) Consider a dielectric step-index asymmetric planar waveguide with n_f = 1.475, n_s = 1.450, n_c = 1, \lambda = 5 \, \mu m. Out of the
                                                                                                                                                           1 point
following options, in which the waveguide does not support any mode?
    d=2 \mu m
    d=5 \mu m
    d = 7 \mu m
    d = 9 \mu m
   No, the answer is incorrect.
   Accepted Answers:
  d=2 \mu m
  6) For a dielectric step-index asymmetric planar waveguide, what should be the value of asymmetry parameter so that TE<sub>0</sub> mode is 1 point
just cut-off at V = 0.5.
    04.2
    3.4
    2.4
    0 1.5
   No, the answer is incorrect.
   Accepted Answers:
  7) Consider a dielectric step-index asymmetric planar waveguide with n_f = 1.475, n_s = 1.450, n_c = 1, d = 4 \mu m. Find the cut off wavelength 1 point
for TE<sub>1</sub> mode.
    1.00 \ \mu m
    1.52 \ \mu m
    2.75 \mu m
    3.85 \mu m
   No, the answer is incorrect.
   Accepted Answers:
  1.52 \mu m
  8) Consider a dielectric step-index asymmetric planar waveguide with n_f = 1.475, n_s = 1.450, n_c = 1, d = 2 \mu m. Calculate the range 1 point
    0.94 \ \mu m < \lambda < 1.03 \ \mu m
    1.08 \ \mu m < \lambda < 1.75 \ \mu m
    1.92 \ \mu m < \lambda < 2.85 \ \mu m
    2.34 \ \mu m < \lambda < 2.57 \ \mu m
                                                                                                                                                           1 point
    2.5 \mu m
    1.4 \mu m
    0.9~\mu m
    0.3~\mu m
   No, the answer is incorrect.
   Score: 0
  Accepted Answers:
   1.4~\mu m
  10) Consider a dielectric step-index asymmetric planar waveguide with n_f = 1.475, n_s = 1.45, n_c = 1. find the range of d for SPSM operation at
                                                                                                                                                           1 point
\lambda_0 = 1 \ \mu m.
```

of wavelength for SPSM operation

No, the answer is incorrect. Score: 0 Accepted Answers: $2.34 \ \mu m < \lambda < 2.57 \ \mu m$ 9) Consider a step index fiber with $n_1 = 1.475$, $n_2 = 1.450$, $a = 2 \mu m$. Calculate its cut off wavelength.

 $0.35 \ \mu m < d < 0.52 \ \mu m$ $0.41 \ \mu m < d < 0.65 \ \mu m$ $0.78 \ \mu m < d < 0.85 \ \mu m$ $1.06 \ \mu m < d < 1.97 \ \mu m$

No, the answer is incorrect.

 $0.78 \ \mu m < d < 0.85 \ \mu m$

Accepted Answers:

Score: 0