Unit 10 - Week 9

NPTEL » Electromagnetism

Course outline How does an NPTEL online course work? Week 1 Week 2 Week 3 Week 4 Week 5

Week 9

Week 8

Week 6

Week 7

 Motion of a charged particle in electromagnetic field

- Work done by a magnetic field
- Electric current
- Surface and volume current
- Biot Savart law
- Biot Savart law with surface and volume currents
- A tutorial on currents and magnetic field
- Quiz : Assignment 9
- Week 9 Feedback : Electromagnetism

Week 10

Week 11

Week 12

Download Videos

Lecture materials

Assignment 9

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due on 2020-04-01, 23:59 IST.

Currents

A current I flows down a wire of radius a.

1) If it is uniformly distributed over the surface, what is the surface current density $\,K\,$?

4 points

 $K = I / \pi a^2$

 $K = 3I / \pi a^2$

 $K = I / 2\pi a$

 $K = I / \pi a$

No, the answer is incorrect.

Score: 0 Accepted Answers:

 $K = I / 2\pi a$

2) If it is distributed in such a way that the volume current density is inversely proportional to the distance from the axis (s), what is J?

5 points

 $J = \frac{I}{}$

No, the answer is incorrect.

Accepted Answers:

3) Suppose that the magnetic field in some region has the form $\vec{B} = kz\hat{x}$ (where k is a constant). Find the force on a square loop (side a), lying in the yz plane and centered at the origin, if it carries a current I, flowing counterclockwise, when you look down the x axis.

5 points

 $F = Ika\hat{z}$

 $F = ka^2\hat{z}$

 $F = Ika^2\hat{z}$

 $F = ka^3\hat{z}$

No, the answer is incorrect. Score: 0

Accepted Answers: $F = Ika^2\hat{z}$

Biot-Savart Law

4) Find the magnetic field at the center of a square loop, which carries a steady current I. Let R be the distance from center to side.

4 points

$$B = \frac{\sqrt{2}\mu_0 I}{\pi R}$$

$$B = \frac{\sqrt{2}\mu}{\pi R}$$

$$B = \frac{2\mu_0 I}{\pi R}$$

$$B = \frac{\sqrt{3}\mu_0 I}{\pi R}$$

No, the answer is incorrect. Score: 0

Accepted Answers:

$$B = \frac{\sqrt{2}\mu_0 I}{\pi R}$$

5) Find the field at the center of a regular n - sided polygon, carrying a steady current I. Again, let R be the distance from the center to any side. 5 points

 $B = \frac{n\mu_0 I}{2\pi R} \cos(\pi/n)$

 $B = \frac{n\mu_0 I}{2\pi R} \sin(\pi/n)$

 $B = \frac{\mu_0 I}{2\pi} \sin(\pi/n)$

 $B = \frac{\mu_0 I}{2\pi R} \sin\left(2\pi/n\right)$

No, the answer is incorrect. Score: 0

Accepted Answers: $B = \frac{n\mu_0 I}{2\pi R} \sin(\pi/n)$