Due on 2020-03-04, 23:59 IST.

4 points

Unit 6 - Week 5

NPTEL » Electromagnetism

Course outline

How does an NPTEL online course work?

Week 1

Week 2

Week 3

Week 4

Week 5

 Tutorial on Dirac delta function and electrostatics

Tutorial on electrostatics

The curl of an electric field

Scalar potential

 Calculation of electric potential from different approaches

Quiz : Assignment 5

Week 5 Feedback : Electromagnetism

Week 6

Week 7

Week 8

Week 9

Week 11

Week 12

Download Videos

Lecture materials

Assignment 5

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

Possible electric field

One of the following is an impossible electric field. Which one? (k is a constant)

4 points

$$\vec{E} = k \left[xy\hat{x} + 2xz\hat{y} + 3xz\hat{z} \right]$$

$$\vec{E} = k \left[y^2 \hat{x} + (2xy + z^2)\hat{y} + 2yz\hat{z} \right]$$

No, the answer is incorrect. Score: 0

Accepted Answers:

 $\vec{E} = k \left[xy\hat{x} + 2xz\hat{y} + 3xz\hat{z} \right]$

For the possible electric field, the scalar potential is

4 points

 $V(x, y, z) = -k(xy^2 + yz^2)$ $V(x,y,z) = -kxy^2$ $V(x, y, z) = -k(xy^2 + yz^2 + zx^2)$

 $V(x, y, z) = k(xy + yz^2)$

No, the answer is incorrect. Score: 0

Accepted Answers:

 $V(x, y, z) = -k(xy^2 + yz^2)$

Potential in cylindrical system

The potential a distance s from an infinitely long straight wire that carries a uniform line charge λ is

 $V(s) = -\frac{1}{4\pi\epsilon_0} 2\lambda \ln\left(\frac{s^3}{a}\right)$

 $V(s) = -\frac{1}{4\pi\epsilon_0} 2\lambda \ln(sa)$

 $V(s) = -\frac{1}{4\pi\epsilon_0} 2\lambda \, \frac{s}{a}$

No, the answer is incorrect. Score: 0

Accepted Answers: $V(s) = -\frac{1}{4\pi\epsilon_0} 2\lambda \, \frac{s}{a}$

4) Hollow spherical shell 5 points

A hollow spherical shell carries a charge density

$$\rho = \frac{k}{r^2}$$

k is a constant. The potential at the center, using infinity as the reference, is

 $V = \frac{k}{\epsilon_0} sin\left(\frac{b}{a}\right)$

 $V = \frac{k}{\epsilon_0} ln\left(\frac{b}{a}\right)$

 $V = \frac{k}{\epsilon_0} exp\left(\frac{b}{a}\right)$

 $V = \frac{k}{\epsilon_0} ln(b - a)$

No, the answer is incorrect.

Score: 0 Accepted Answers:

 $V = \frac{k}{\epsilon_0} ln\left(\frac{b}{a}\right)$