Due on 2020-02-26, 23:59 IST.

1) The electric field a distance z above one end of a straight line segment of length L that carries a uniform line charge λ may be expressed as

4 points

5 points

5 points

3 points

4 points

5 points

2 points

3 points

3 points

Unit 5 - Week 4

NPTEL » Electromagnetism

Course outline

How does an NPTEL online course work?

Week 1

Week 2

Week 3

Week 4

curvilinear coordinates Introduction to electrostatics

Tutorial on vector calculus and

- Continuous charge
- distribution: Line charge Electric field due to a line
- charge distribution
- Electric field lines, Flux,
- Gauss law
- Application of Gauss law with cylindrical symmetry
- Application of Gauss law on a flat 2D surface
- Quiz : Assignment 4
- Week 4 Feedback : Electromagnetism
- Week 5
- Week 6
- Week 7
- Week 8 Week 9
- Week 10
- Week 11 Week 12
- **Download Videos** Lecture materials

No, the answer is incorrect. Score: 0 Accepted Answers: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda}{z} \left[\left(-1 + \frac{z}{\sqrt{z^2 + L^2}} \right) \hat{x} + \left(\frac{L}{\sqrt{z^2 + L^2}} \right) \hat{z} \right]$

2) The electric field a distance
$$z$$
 above the center of a square loop (side a) carrying uniform line charge λ is given as

- $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda az}{(z^2 + a^2)\sqrt{z^2 + a^2/2}} \hat{z}$
 - $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{4\lambda az}{(z^2 + a^2/4)\sqrt{z^2 + a^2/2}} \hat{z}$

Assignment 4

Electric field due to line charge distribution

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

 $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda}{z} \left[\left(-1 + \frac{z}{\sqrt{z^2 + L^2}} \right) \hat{x} + \left(\frac{L}{\sqrt{z^2 + L^2}} \right) \hat{z} \right]$

 $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda}{z} \left[\left(1 - \frac{z}{\sqrt{z^2 + L^2}} \right) \hat{x} + \left(\frac{L}{\sqrt{z^2 + L^2}} \right) \hat{z} \right]$

 $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda}{z} \left[\left(1 - \frac{z^2}{\sqrt{z^2 + L^2}} \right) \hat{x} + \left(\frac{L}{\sqrt{z^2 + L^2}} \right) \hat{z} \right]$

 $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda}{z} \left[\left(-1 + \frac{z}{\sqrt{z^2 + L^2}} \right) + \left(\frac{L}{\sqrt{z^2 + L^2}} \right) \right] \hat{z}$

- $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{4\lambda az}{(z^2 + a^2/4)\sqrt{z^2 + a^2/4}} \hat{z}$
- No, the answer is incorrect. Accepted Answers: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{4\lambda az}{(z^2 + a^2/4)\sqrt{z^2 + a^2/2}} \,\hat{z}$

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda rz}{(z^2 + r^2)\sqrt{z^2 + r^2/2}} \hat{z}$$

 $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda(2\pi r)z}{r^2 + z^2} \hat{z}$

3) The electric field a distance z above the center of a flat circular loop of radius r that carries a uniform line charge is expressed as

 $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda(\pi r^2)z}{(r^2 + z^2)^{3/2}} \hat{z}$ $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda (2\pi r)z}{(r^2 + z^2)^{3/2}} \hat{z}$ No, the answer is incorrect. Score: 0 Accepted Answers: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda(2\pi r)z}{(r^2+z^2)^{3/2}} \hat{z}$

The charge density ρ is

Gauss law in spherical coordinate system

 $5\epsilon_0 kr^2$

The total charge contained in a sphere of radius R centered at the origin is

Suppose the electric field in some region is found to be $\vec{E}=kr^3\hat{r}$, in spherical coordinates. k is a constant

 $5\epsilon_0 kr^3$ No, the answer is incorrect. Score: 0 Accepted Answers: $5\epsilon_0 kr^2$

 $\epsilon_0 kr^2$

 $5\epsilon_0 kr$

- $\frac{5}{4}\pi\epsilon_0kR^5$ $4\pi\epsilon_0 kR^5$
- $\pi \epsilon_0 k R^3$ $4\pi\epsilon_0 kR^4$
- Score: 0 Accepted Answers: $4\pi\epsilon_0 kR^5$
- A sphere of radius R carries a charge density proportional to the distance from the origin: $\rho = kr, k$ is a constant. The electric field inside the sphere is

6) Gauss law in sphere :

No, the answer is incorrect.

- $\vec{E} = \frac{1}{4\pi\epsilon_0} \pi k r^3 \hat{r}$ $\vec{E} = \frac{1}{4\pi\epsilon_0} \pi k R^2 \hat{r}$
- $\vec{E} = \frac{1}{4\pi\epsilon_0} \pi k r^2 \hat{r}$
- $\vec{E} = \frac{1}{4\epsilon_0} k R^4 \hat{r}$
- No, the answer is incorrect. Score: 0 Accepted Answers: $\vec{E} = \frac{1}{4\pi\epsilon_0} \pi k r^2 \hat{r}$

Spherical shell A thick spherical shell carries a charge density $\rho = \frac{k}{r^2} \ (a \le r \le b)$

7) The electric field in the region r < a is

$$\vec{E} = 0$$

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \pi k r^3 \hat{r}$$

- $\vec{E} = \frac{k}{\epsilon_0} \left(\frac{b a}{r^2} \right) \hat{r}$
- $\vec{E} = \frac{k}{\epsilon_0} \left(\frac{r a}{r^2} \right) \hat{r}$ No, the answer is incorrect. Score: 0

Accepted Answers:

 $\vec{E} = 0$

8) The electric field in the region a < r < b is

 $\vec{E} = \frac{1}{4\pi\epsilon_0} \pi k r^3 \hat{r}$

- $\vec{E} = \frac{k}{\epsilon_0} \left(\frac{b a}{r^2} \right) \hat{r}$
- No, the answer is incorrect. Score: 0 Accepted Answers:

 $\vec{E} = \frac{k}{\epsilon_0} \left(\frac{r - a}{r^2} \right) \hat{r}$

 $\vec{E} = 0$ $\vec{E} = \frac{1}{4\pi a} \pi k r^3 \hat{r}$

9) The electric field in the region r > b is

$$\vec{E} = \frac{k}{\epsilon_0} \left(\frac{b-a}{r^2} \right) \hat{r}$$

$$\vec{E} = \frac{k}{\epsilon_0} \left(\frac{r-a}{r^2} \right) \hat{r}$$
 No, the answer is incorrect.

Score: 0

 $4\pi\epsilon_0$

Accepted Answers: $\vec{E} = \frac{k}{\epsilon_0} \bigg(\frac{b-a}{r^2} \bigg) \hat{r}$