Progress

## Unit 4 - Week 3

How does an NPTEL online

Curvilinear coordinates:

 Generic curvilinear coordinate systems: Unit vectors and

Differential vector calculus in

curvilinear coordinate systems

Special curvilinear coordinate

systems: Cylindrical and

Vector calculus in spherical

Vector calculus in cylindrical

Introduction to Dirac delta

Week 3 Practice Assignment

coordinate system

coordinate system

Quiz : Assignment 3

Week 3 Feedback : Electromagnetism

Cartesian vs. Polar

components

spherical

function

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

**Download Videos** 

Lecture materials

Accepted Answers:

Course outline

course work?

Week 1

Week 2

Week 3

NPTEL » Electromagnetism

## **Assignment 3** The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Divergence in spherical coordinate system. A vector field $\vec{v}$ is expressed in spherical coordinate system as $\vec{v} = (r\cos\theta)\hat{r} + (r\sin\theta)\hat{\theta} + (r\sin\theta\cos\phi)\hat{\phi}$ 1) $\vec{\nabla} \cdot \vec{v}$ is $r \cos\theta - \sin\phi$ $r\cos\theta + r\sin\phi$ $5\cos\theta - \sin\phi$ $5\cos\theta + \sin\phi$ No, the answer is incorrect. Score: 0 Accepted Answers: $5\cos\theta - \sin\phi$ is $\frac{\frac{5}{4}\pi R^2}{\frac{5}{3}\pi R^2}$ $\frac{\frac{5}{4}\pi R^4}{\frac{5}{3}\pi R^3}$ No, the answer is incorrect. Score: 0 Accepted Answers: $\frac{5}{3}\pi R^3$ Cylindrical coordinate system A vector $\vec{v}$ is given in cylindrical coordinate system as $\vec{v} = s(2 + \sin^2 \phi) \hat{s} + s \sin\theta \cos\phi \hat{\phi} + 3z\hat{z}.$ 3) $\vec{\nabla} \cdot \vec{v}$ is 07 **8** 9 **10**

