NPTEL » Electromagnetism

Unit 3 - Week 2 Course outline How does an NPTEL online course work? Week 1 Week 2 More problems on vector differential calculus Vector integral calculus: Line integral Surface integral Volume integral Fundamental theorems of vector calculus: The gradient theorem The divergence theorem (Gauss's theorem) The curl theorem (Stokes' Week 2 Practice Assignment Quiz : Assignment 2 Week 2 Feedback Assignment 2 solutions Week 3 Week 4 Week 5 Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Download Videos

Lecture materials

Assignment 2

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2020-02-12, 23:59 IST.

Line integral

Suppose
$$\phi=2xyz^2$$
, $\vec{F}=xy\hat{x}-z\hat{y}+x^2\hat{z}$, and C is a curve $x=t^2$, $y=2t$, $z=t^3$ from $t=0$ to $t=1$

1) The integral
$$\int_c \phi \ d\vec{r}$$
 evaluates to

3 points

$$\frac{8}{11}\hat{x} + \frac{4}{5}\hat{y} + \frac{1}{2}\hat{z}$$

$$\frac{8}{11}\hat{x} + \frac{4}{5}\hat{y} + \hat{z}$$

$$\frac{8}{11}\hat{x} - \frac{4}{5}\hat{y} + \hat{z}$$

$$\frac{8}{11}\hat{x} - \frac{4}{5}\hat{y} + \frac{1}{2}\hat{z}$$

No, the answer is incorrect.

Accepted Answers:
$$\frac{8}{11}\hat{x} + \frac{4}{5}\hat{y} + \hat{z}$$

2) The integral
$$\int_c \vec{F} imes d\vec{r}$$
 evaluates to

4 points

8 points

5 points

$$\frac{9}{10}\hat{x} - \frac{2}{3}\hat{y} + \frac{7}{5}\hat{z}$$

$$-\frac{9}{10}\hat{x} - \frac{2}{3}\hat{y} - \frac{7}{5}\hat{z}$$

$$-\frac{9}{10}\hat{x} - \frac{2}{3}\hat{y} + \frac{7}{5}\hat{z}$$

$$-\frac{9}{10}\hat{x} + \frac{2}{3}\hat{y} + \frac{7}{5}\hat{z}$$

No, the answer is incorrect. Score: 0

Accepted Answers: $-\frac{9}{10}\hat{x} - \frac{2}{3}\hat{y} + \frac{7}{5}\hat{z}$

Surface integral 8 points

 $\int_S \vec{A}. \, d\vec{a}$ ($d\vec{a}$ is the area element) becomes **24**

Suppose $\vec{A}=18z\hat{x}-12\hat{y}+3y\hat{z}$ and S is the part of the plane 2x+3y+6z=12 located in the first octant.

O 19 **14**

O 16

No, the answer is incorrect. Score: 0

Accepted Answers:

4) Volume integral

6 points

A volume V is bounded by the surfaces x=0, y=0, y=6, $z=x^2$, z=4. The volume integral $\int_V \vec{F} dV$ for $\vec{F}=2xz\hat{x}-x\hat{y}+y^2\hat{z}$ is

$$125\hat{x} - 24\hat{y} + 384\hat{z}$$

$$128\hat{x} + 24\hat{y} + 384\hat{z}$$

$$125\hat{x} + 24\hat{y} + 384\hat{z}$$

$$128\hat{x} - 24\hat{y} + 384\hat{z}$$

No, the answer is incorrect. Score: 0 Accepted Answers:

 $128\hat{x} - 24\hat{y} + 384\hat{z}$

5) Divergence theorem

A fluid of density $\rho(x,y,z,t)$ moves with velocity $\vec{v}(x,y,z,t)$. The current density \vec{J} is given by $\vec{J}=\rho\vec{v}$. If there are no sources or sinks,

applying divergence theorem the relation you find between $\vec{\nabla}$. \vec{J} and $\frac{\partial \rho}{\partial t}$ is

$$\vec{\nabla}.\,\vec{J} = \frac{\partial \rho}{\partial t}$$

$$\vec{\nabla}.\ \vec{J} = -\frac{\partial \rho}{\partial t}$$

$$\vec{\nabla} \cdot \vec{J} = \frac{1}{2} \frac{\partial \rho}{\partial t}$$

$$\vec{\nabla}.\,\vec{J} = \frac{1}{2}\frac{\partial\rho}{\partial t}\,v$$

Score: 0 Accepted Answers:

No, the answer is incorrect.

$$\vec{\nabla}.\ \vec{J} = -\frac{\partial \rho}{\partial t}$$

$$\nabla \cdot J = -\frac{1}{\partial t}$$

6) Stokes' theorem

Let $x=\cos t$, $y=\sin t$, z=0 , $0\leq t<2\pi$ be the parametric equation of a line C . For a $\vec{A}=(2x-y)\hat{x}-yz^2\hat{y}-y^2z\hat{z}$,

the surface integral $\int_S (\vec{\nabla} imes \vec{A}) \, . \, d\vec{a}$ over any surface S enclosed by the line C becomes

 -2π

 π

 2π

 4π

Score: 0 Accepted Answers:

No, the answer is incorrect.