6 points

6 points

## Unit 13 - Week 12

NPTEL » Electromagnetism

## Course outline

How does an NPTEL online course work?

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

## Week 12

- Ampere's law in magnetized materials
- Electrodynamics
- Electromagnetic induction
- Laws of electromagnetism so far
- Maxwell's correction to electromagnetism
- Fictitious discussion about symmetry
- Maxwell's equations in matter and the boundary conditions
- O Quiz : Assignment 12
- Week 12 Feedback : Electromagnetism

Download Videos

Lecture materials

## **Assignment 12**

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

Due on 2020-04-22, 23:59 IST.

1) Inductance 6 points

Find the self-inductance per unit length of a long solenoid, of radius R , carrying n turns per unit length.

 $L = \mu_0 \pi n^2 R^2$ 

 $L = \mu_0 \pi n R$ 

 $L = \mu_0 2\pi R$ 

 $L = \mu_0 nR$ 

No, the answer is incorrect. Score: 0

Accepted Answers:

 $L = \mu_0 \pi n^2 R^2$ 

A long solenoid, of radius a, is driven by an alternating current, so that the field inside is sinusoidal:  $\overrightarrow{B(t)} = B_0 cos(\omega t)\hat{z}$ . A circular loop of wire, of radius a/2 and resistance R, is placed inside the solenoid, and coaxial with it. Find the current induced in the loop, as a function of time.

 $I(t) = \frac{\pi a}{4R} B_0 sin(\omega t)$ 

 $I(t) = \frac{\pi a^2 \omega}{4R} B_0 cos(\omega t)$ 

 $I(t) = \frac{\pi a^2 \omega}{4R} B_0 sin(\omega t)$ 

 $I(t) = \frac{\pi a \omega}{R} B_0 sin(\omega t)$ 

No, the answer is incorrect. Score: 0

Accepted Answers:

 $I(t) = \frac{\pi a^2 \omega}{4R} B_0 \sin(\omega t)$ 

3) A long cable carries current in one direction uniformly distributed over its (circular) cross section. The current returns along the surface (there is a very thin insulating sheath separating the currents). Find the self-inductance per unit length.

 $L/l = \frac{\mu_0}{4\pi}$ 

 $L/l = \frac{\mu_0}{8\pi}$ 

 $L/l = \frac{\mu_0}{16\pi}$ 

 $L/l = \frac{\mu_0}{2\pi}$ 

Score: 0

No, the answer is incorrect.

Accepted Answers:  $L/l = \frac{\mu_0}{8\pi}$