4 points

ourse outline	Assignment 11	
w does an NPTEL online urse work?	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	9 IST.
ek 1	1) Magnetic Dipole	5 points
ek 2	A circular loop of wire, with radius R , lies in the xy plane, centered at the origin, and carries a current I running counterclockwise as viewed from the positive z axis. What is its magnetic dipole moment?	
ek 3		
ek 4	$\vec{m} = 2I\pi R\hat{z}$	
ek 5	$\vec{m} = I\pi R^2 \hat{z}$	
ek 6	$\vec{m} = 3\pi\mu_0 I R\hat{z}$	
ek 7	$\vec{m} = I^2 \pi R^2 \hat{z}$	
ek 8	No, the answer is incorrect. Score: 0	
ek 9	Accepted Answers: $\vec{m} = I\pi R^2 \hat{z}$	
ek 10		
ek 11	A thin uniform donut, carrying charge Q and mass M , rotates about its axis \hat{z}	
Calculation of vector potential	2) The gyromagnetic ratio is	4 point
Boundary conditions on magnetic field	$g = \frac{2Q}{M}$	
Magnetic dipole		
Multipole expansion of the vector potential	$g = \frac{Q}{M}$	
Magnetism, force and torque on magnetic dipole	$g = \frac{Q}{4M}$	
Fringing magnetic field	Q	
Magnetization	$g = \frac{Q}{2M}$	
A tutorial on the magnetic dipole moment	No, the answer is incorrect. Score: 0 Accepted Answers:	
Quiz : Assignment 11	$g = \frac{Q}{2M}$	
Week 11 Feedback : Electromagnetism	3) What is the gyromagnetic ratio for a uniform spinning sphere of radius $\it R$?	4 point
ek 12	\circ	
wnload Videos	$g = \frac{2QR}{M}$	
cture materials	$g = \frac{2Q}{RM}$	
	$g = \frac{Q}{2M}$	
	$g = \frac{QR}{2M}$	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	$g = \frac{Q}{2M}$	
	A uniform current density $J=J_0\hat{z}$ fills a slab straddling the yz plane, from $x=-a$ to $x=+a$. A magnetic dipole $m=m_0\hat{x}$ is situated at origin	t the
	origin. 4) The force on the dipole is	4 point
	$\vec{F} = \mu_0 J_0 a^2 \hat{x}$	
	$\vec{F} = m_0 \mu_0 J_0 a \hat{x}$	
	$\vec{F} = 0$	
	$ec{F} = \mu_0 J_0 a \hat{y}$	

5) What is the force if the dipole pointing in the y direction: $m=m_0\hat{y}$.

 $\vec{F} = m_0 \mu_0 J_0 \hat{x}$ $\vec{F} = m_0 \mu_0 J_0 a \hat{z}$ $\vec{F} = \mu_0 J_0 a \hat{y}$ $\vec{F} = 0$

Accepted Answers: $\vec{F} = m_0 \mu_0 J_0 \hat{x}$

No, the answer is incorrect. Score: 0