Course outline

course work?

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

the magnetic field

Magnetic vector potential

Electromagnetism

Download Videos

Lecture materials

Week 11

Week 12

How does an NPTEL online

3 points

5 points

5 points

5 points

Unit 11 - Week 10

NPTEL » Electromagnetism

Assignment 10 The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Solenoid

Accepted Answers:

No, the answer is incorrect.

Accepted Answers:

Score: 0

Capacitor

Due on 2020-04-08, 23:59 IST.

Two long coaxial solenoids each carry current I, but in opposite directions. The inner solenoid (radius a) has n_1 turns per unit length, and the outer one (radius b) has n_2

 Find B inside the inner solenoid 3 points

$$B = \mu_0 I(n_2 - n_1)\hat{z}$$

$$B = \mu_0 I n_1$$

$$B = \mu_0 I n_2 n_1$$

$$B = I(n_2 - n_1)$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$$B = In_2$$

Ampere's law in integral form and its applications $B = \mu_0 In_2$

Magnetic field in a long solenoid $B = -\mu_0 In_2^2$

$$B = -\mu_0 I n_2^2$$

A comparison between electrostatics nad magnetostatics $B = -\mu_0 I (n_2 - n_1)$

No, the answer is incorrect. Score: 0

 Tutorial on magnetic fields $B = \mu_0 I n_2$ Quiz : Assignment 10 Find B between outside the solenoid 3 points Week 10 Feedback :

$$B = 0$$

$$B = \mu_0 I n_1$$

$$B = -\mu_0 I n_2$$

$$B = -\mu_0 I (n_2 - n_1)$$

B = 0

A large parallel-plate capacitor with uniform surface charge σ on the upper plate and $-\sigma$ on the lower is moving with a constant speed v.

$$B=\mu_0\sigma v$$
 in between the plates and $B=0$ elsewhere.

$$B=0$$
 in between the plates and $B=\mu_0\sigma v$ elsewhere $B=\sigma v$

$$B=\mu_0\sigma v^2$$
 in between the plates and $B=\mu_0 v$ elsewhere No, the answer is incorrect.

Score: 0 Accepted Answers:

in between the plates and B=0 elsewhere

 $B = \mu_0 \sigma v$

Accepted Answers:

Accepted Answers:

 $f_c = \sigma^2 / 2\epsilon_0, \downarrow$

in between the plates and B=0 elsewhere. 5) Find the magnetic force per unit area on the upper plate, including its direction.

$$f_m = \mu_0 \sigma^2 v^2 / 2, \downarrow$$

$$f_m = \mu_0 \sigma^2 v^2$$
, \uparrow
 $f_m = \mu_0 \sigma v^2 / 2$, \downarrow
 $f_m = \mu_0 \sigma^2 v^2 / 2$, \uparrow

No, the answer is incorrect. Score: 0

Accepted Answers:

 $f_m = \mu_0 \sigma^2 v^2 / 2$, \uparrow Find the electric force per unit area on the upper plate, including its direction.

$$f_c = \epsilon_0 \sigma^2 v^2 / 2$$
, \downarrow
 $f_c = \mu_0 \sigma^2 v^2$, \uparrow
 $f_c = \sigma^2 / 2\epsilon_0$, \downarrow
 $f_c = \sigma^2 v^2 / 2\epsilon_0$, \downarrow

No, the answer is incorrect. Score: 0

7) At what speed v would the magnetic force balance the electrical force?

$$v = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = c$$

$$v = \frac{1}{2\sqrt{\varepsilon_0\mu_0}} = c/2$$

$$v = \frac{1}{\sqrt{16\varepsilon_0\mu_0}} = c/4$$

$$v = \frac{1}{\sqrt{9\varepsilon_0\mu_0}} = c/3$$
No, the answer is incorrect.
Score: 0