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1.  

a) Show that the Hamiltonian for the Central Field Potential is given by 
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Where 
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b) If the solution to Schrodinger equation with above Hamiltonian for the special case 

of zero potential is written as  

   ,klm kl lmR r Y    

Then show that the stationary state solutions satisfy the following normalization 

condition:  2
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c) If the normalization is done on the energy scale instead of 
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that 
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d) Prove that the energy normalization eigen function for a free particle in one 

dimension (along x axis) is given by 
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2.  

a) Show that for a free particle 0
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c)  2kl lR kj kr  

where  lj kr are spherical Bessel functions. 

 

 

 



3. Subject the solution to the Schrodinger equation for scattering of an electron by a central 

potential, given by (outgoing wave boundary conditions): 
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To time-reversal symmetry and show clearly that the solution for photoelectron ejection is 

given by (ingoing wave boundary conditions): 
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4. Obtain the phase shifts 
l produced by a repulsive potential   2

A
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kind of angular distribution do you get? Is the scattering cross section finite? 

 

5. If the scattering potential is attractive   2
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there be any further restriction? Here, 
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6. If the differential scattering cross section is written in the form 
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 express the coefficients , &A B C in terms of the phase shifts 
l . 

 

7.  

a) Show that the general solution to the Schrodinger equation, 
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b) Prove that   sin
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8.  

1. Prove that the scattering amplitude  f  given in the asymptotic form 
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Is related to the differential cross section 
d

d




by the following relation: 

 
2

, ,
d

f k
d


 


 

2. Prove that the total scattering cross-section is given by  
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