Department of Physics, IIT Madras

Hartree Fock formalism

1. For a two electron system, spin exchange operator is given by $\hat{V}_{e x}=-\frac{1}{2} K\left(1+4 \hat{s}_{1} \bullet \hat{s}_{2}\right)$ Where K is the exchange integral and \hat{s}_{1} and \hat{s}_{2} are spin angular momentum operators of two electrons. This was first introduced by Dirac and has wide applications in Condensed Matter Physics.
a) Show that $\hat{S}_{1} \bullet \hat{S}_{2}=\frac{1}{2}\left[\hat{S}^{2}-\hat{s}_{1}{ }^{2}-\hat{s}_{2}{ }^{2}\right]$

Where \hat{S} is total spin operator.
b) Show that eigenvalues of $\hat{s}_{1} \bullet \hat{\bullet}_{2}$ for triplet $(S=1)$ and singlet $(S=0)$ states are $\frac{1}{4}$ and $-\frac{3}{4}$ respectively.
c) Find the eigenvalues of $V_{e x}$ for triplet and singlet states.
d) Show that $V_{\text {sin glet }}-V_{\text {triplet }}=2 \mathrm{~K}$.
e) Which is the ground state of the system?
2. Prove that the direct integral J and exchange integral K for a N electron atomic system are real and positive.
3. For the ground state of an atom or ion having N electrons,

$$
\begin{aligned}
& H_{1}=\sum_{i=1}^{N} f\left(q_{i}\right)=\sum_{i=1}^{N}\left(-\frac{\nabla_{i}^{2}}{2}-\frac{Z}{r_{i}}\right) \\
& H_{2}=\frac{1}{2} \sum_{i, j=1, j \neq i}^{N} V\left(q_{i}, q_{j}\right)=\sum_{i>j} \frac{1}{r_{i j}}
\end{aligned}
$$

Where H_{1} is the sum of the N identical one-body hydrogenic Hamiltonian and H_{2} is the sum of $\frac{N(N-1)}{2}$ identical terms which represent the two-body interactions between each pair of electrons and ϕ_{a} and ϕ_{b} are Slater determinants,

$$
\begin{aligned}
& \phi_{a}\left(q_{1}, q_{2} \ldots \ldots q_{N}\right)=\frac{1}{N!} \sum_{P}(-1)^{P} P u_{\alpha_{1}}\left(q_{1}\right) u_{\alpha_{2}}\left(q_{2}\right) \ldots \ldots u_{\alpha_{N}}\left(q_{N}\right) \\
& \phi_{b}\left(q_{1}, q_{2} \ldots \ldots q_{N}\right)=\frac{1}{N!} \sum_{P}(-1)^{P} P u_{\beta_{1}}\left(q_{1}\right) u_{\beta_{2}}\left(q_{2}\right) \ldots \ldots u_{\beta_{N}}\left(q_{N}\right)
\end{aligned}
$$

where P is the permutation operator.

Prove that:
a) For $\phi_{a}=\phi_{b}$,

$$
\begin{aligned}
& \left\langle\phi_{a}\right| H_{1}\left|\phi_{a}\right\rangle=\sum_{i=1}^{N}\left\langle u_{\alpha_{i}}\left(q_{i}\right)\right| f\left|u_{\alpha_{i}}\left(q_{i}\right)\right\rangle \\
& \left\langle\phi_{a}\right| H_{2}\left|\phi_{a}\right\rangle=\frac{1}{2} \sum_{i, j=1}^{N}\left[\left\langle u_{\alpha_{i}}\left(q_{i}\right) u_{\alpha_{j}}\left(q_{j}\right)\right| V\left|u_{\alpha_{i}}\left(q_{i}\right) u_{\alpha_{j}}\left(q_{j}\right)\right\rangle\right. \\
& \left.-\left\langle u_{\alpha_{j}}\left(q_{i}\right) u_{\alpha_{i}}\left(q_{j}\right)\right| V\left|u_{\alpha_{i}}\left(q_{i}\right) u_{\alpha_{j}}\left(q_{j}\right)\right\rangle\right] .
\end{aligned}
$$

b) For $\phi_{a} \neq \phi_{b}$
($\beta_{k} \neq \alpha_{k}$ and $\beta_{i}=\alpha_{i}$ for all $i \neq k$)
$\left\langle\phi_{b}\right| H_{1}\left|\phi_{a}\right\rangle=\left\langle u_{\beta_{k}}\left(q_{k}\right)\right| f\left|u_{\alpha_{k}}\left(q_{k}\right)\right\rangle$
$\left\langle\phi_{b}\right| H_{2}\left|\phi_{a}\right\rangle=\sum_{i=1}^{N}\left\langle u_{\alpha_{i}}\left(q_{i}\right) u_{\beta_{k}}\left(q_{k}\right)\right| V\left|u_{\alpha_{i}}\left(q_{i}\right) u_{\alpha_{k}}\left(q_{k}\right)\right\rangle$
$\left.-\left\langle u_{\beta_{k}}\left(q_{i}\right) u_{\alpha_{i}}\left(q_{k}\right)\right| V\left|u_{\alpha_{i}}\left(q_{i}\right) u_{\alpha_{k}}\left(q_{k}\right)\right\rangle\right]$
c) For $\phi_{a} \neq \phi_{b}$
$\left(\beta_{k} \neq \alpha_{k} ; \beta_{k} \neq \alpha_{l} ; \beta_{l} \neq \alpha_{l} ; \beta_{l} \neq \alpha_{k}\right.$ and $\beta_{i}=\alpha_{i}$ for all $i \neq k, l$
$\left\langle\phi_{b}\right| H_{1}\left|\phi_{a}\right\rangle=0$
$\left\langle\phi_{b}\right| H_{2}\left|\phi_{a}\right\rangle=\sum_{i=1}^{N}\left\langle u_{\beta_{k}}\left(q_{k}\right) u_{\beta_{l}}\left(q_{l}\right)\right| V\left|u_{\alpha_{k}}\left(q_{k}\right) u_{\alpha_{l}}\left(q_{l}\right)\right\rangle$
$-\left\langle u_{\beta_{l}}\left(q_{k}\right) u_{\beta_{k}}\left(q_{l}\right)\right| V\left|u_{\alpha_{k}}\left(q_{k}\right) u_{\alpha_{l}}\left(q_{l}\right)\right\rangle$.
d) For $\phi_{a} \neq \phi_{b}$
(Differing in more than 2 sets of q labels.)

$$
\begin{aligned}
& \left\langle\phi_{b}\right| H_{1}\left|\phi_{a}\right\rangle=0 \\
& \left\langle\phi_{b}\right| H_{2}\left|\phi_{a}\right\rangle=0
\end{aligned}
$$

4. Prove that the matrix λ, made up of Lagrange variational multipliers which constraint the variation in the elements of Hartree-Fock Slater determinants, is self adjoint.
5.

a) Obtain the condition that $\langle H\rangle$, where H is the N -electron Hamiltonian, is an extremum subject to the constraint that the one-electron spin-orbitals in the variational N -electron antisymmetrized wave function are normalized and orthogonal.
b) Express the above condition in a form in which the matrix of the Lagrange variational multipliers is diagonal and demonstrate that this condition is expressed by:

$$
\begin{aligned}
f\left(\vec{r}_{1}\right) u_{k}\left(\vec{r}_{1}\right)+ & {\left[\sum_{j} \int d \tau_{2} \frac{u_{j}^{*}\left(\vec{r}_{2}\right) u_{j}\left(\vec{r}_{2}\right)}{r_{12}}\right] u_{k}\left(\vec{r}_{1}\right) } \\
& \quad-\sum_{j} \delta\left(m_{s_{k}}, m_{s_{j}}\right)\left[\int d \tau_{2} \frac{u_{j}^{*}\left(\vec{r}_{2}\right) u_{k}\left(\vec{r}_{2}\right)}{r_{12}}\right] u_{j}\left(\vec{r}_{1}\right) \\
& =-\lambda_{k k} u_{k}\left(\vec{r}_{1}\right) \\
& =\varepsilon_{k} u_{k}\left(\vec{r}_{1}\right)
\end{aligned}
$$

Where $\varepsilon_{k}=-\lambda_{k k}$
c) Comment on the factor $\delta\left(m_{s_{k}}, m_{s_{j}}\right)$ in the above equation.
d) Find the function $U_{k}\left(\vec{r}_{1}, \vec{r}_{2}\right)$ such that;

$$
\int d \tau_{2} U_{k}\left(\vec{r}_{1}, \vec{r}_{2}\right) u_{k}\left(\vec{r}_{2}\right)=-\sum_{j} \delta\left(m_{s_{k}}, m_{s_{j}}\right)\left[\int d \tau_{2} \frac{u_{j}^{*}\left(\vec{r}_{2}\right) u_{k}\left(\vec{r}_{2}\right)}{r_{12}}\right] u_{j}\left(\vec{r}_{1}\right)
$$

e) Show that the one-electron Hartree-Fock equation is written in a form inclusive of the spin variables such that the spin-orbital $U_{k}(q)=\langle q \mid k\rangle$ has k which represents a set of 4 quantum numbers including spin is given by:

$$
\left[\frac{-\nabla_{i}^{2}}{2}+V_{H F}\left(q_{i}\right)\right] u_{k}\left(q_{i}\right)=\varepsilon_{k} u_{k}\left(q_{i}\right)
$$

Where
$V_{H F}\left(q_{i}\right)=\frac{-Z}{r_{i}}+V^{c}\left(q_{i}\right)+V^{e x}\left(q_{i}\right)$
$V^{c}\left(q_{i}\right)=\sum_{j=1}^{N} \int d q_{2} \frac{u_{j}^{*}\left(q_{2}\right) u_{j}\left(q_{2}\right)}{r_{i 2}}$
$V^{e x} u_{k}\left(q_{i}\right)=-\sum_{j=1}^{N} \int d q_{2} \frac{u_{j}^{*}\left(q_{2}\right) u_{k}\left(q_{2}\right)}{r_{i 2}} u_{j}\left(q_{i}\right)$
f) Is the Hartree-Fock equation given above an eigenvalues equation?
g) Can you define the Hartree-Fock potential $V_{H F}$ as a function of a single coordinate (that is, one set of 3 space coordinates and 1 spin coordinate) alone?
6. Determine if the potential U in problem 5(d) is Hermitian.
7.
a) Prove that;

$$
-\lambda_{k k}=n_{k}\langle k| f|k\rangle+n_{k} \sum_{j} n_{j}[\langle k j| V|k j\rangle-\langle j k| V|k j\rangle
$$

b) If $-\lambda_{k k}$ is written as ε_{k}, prove that:
c) $E\left(\phi^{(N)}\right)-E\left(\phi_{n_{k}=0}^{(N-1)}\right)=\varepsilon_{k}$
[Ref : T.H. Koopmans Physics 1104 (1933)]
d) Write the Slater determinant for ground state $1 s^{2} 2 s^{21} S$ of beryllium.
e) The Hartree-Fock potential is given by:

$$
V_{H F}=-\frac{4}{r_{i}}+V_{1 s \uparrow}^{d}+V_{1 s \downarrow}^{d}+V_{2 s \uparrow}^{d}+V_{2 s \downarrow}^{d}-\left(V_{1 s \uparrow}^{e x}+V_{1 s \downarrow}^{e x}+V_{2 s \uparrow}^{e x}+V_{2 s \downarrow}^{e x}\right)
$$

Where V^{d} and $V^{e x}$ are direct and exchange integrals respectively.
Obtain the two coupled integro-differential equation:

$$
\begin{aligned}
& \left\{-\frac{1}{2} \nabla_{r}^{2}-\frac{4}{r}+V_{1 s}^{d}(r)+2 V_{2 s}^{d}(r)-V_{2 s}^{e x}(r)\right\} u_{1 s}(r)=E_{1 s} u_{1 s}(r) \\
& \left\{-\frac{1}{2} \nabla_{r}^{2}-\frac{4}{r}+V_{2 s}^{d}(r)+2 V_{1 s}^{d}(r)-V_{1 s}^{e x}(r)\right\} u_{2 s}(r)=E_{2 s} u_{2 s}(r)
\end{aligned}
$$

8. Prove that $[H, L]=0$, where H is the Hamiltonian

$$
H=\sum_{i=1}^{N}\left(-\frac{\nabla_{i}^{2}}{2}-\frac{Z}{r_{i}}\right)+\sum_{i<j=1}^{N} \frac{1}{r_{i j}}
$$

And $L=\sum_{i} L_{i}$ is the total orbital angular momentum of the electrons.

Useful references:

1. Bethe, H.A and Jackiw R; Intermediate Quantum Mechanics; West-view press (1986).
2. Brandsen aB.H and joachain C.J; Physics of atoms and molecules;Longman Group Limited (1983).
3. Landau L.D. and Lifshitz E.M; Quantum Mechanics Non-Relativistic Theory; Pergamon Oxford (1977)
