Department of Physics, IIT Madras
 Angular Momentum, Spherical Harmonics, Wigner Eckart Theorem

PCD_STiAP_P02

1. (a) Prove that $\frac{\vec{p}}{\hbar}$ is the generator of infinitesimal translation.
(b) Prove that $\frac{\vec{L}}{\hbar}$ is the generator of infinitesimal rotation.
(c) Write the commutation relations for the generators of infinitesimal translations.
(d) Write the commutation relations for the generators of infinitesimal rotations.
(e) Show that the angular momentum vector operator L commutes with the potential energy operator for a central field.
(f) Show that:

$$
\begin{array}{cl}
\text { i. } & J_{z} J_{+}-J_{+} J_{z}=\hbar J_{+} \\
\text {ii. } & J_{-} J_{z}-J_{z} J_{-}=\hbar J_{-} \\
\text {iii. } & J_{+} J_{-}-J_{-} J_{+}=2 \hbar J_{z} \\
\text { iv. } & J^{2} J-J J^{2}=0 \\
\text { v. } & J^{2}-J_{Z}^{2} \pm \hbar J_{Z}=J_{ \pm} J_{\mp}
\end{array}
$$

(e) Generate the matrix representation for $J^{2}, J_{x}, J_{y} a n d J_{z}$
(i) $j=\frac{1}{2}$ (ii) $\mathrm{j}=1$ (iii) $j=\frac{3}{2}$
2. (a) What quantities are conserved in the classical Kepler two body problem?
(b) What are the corresponding symmetries?
(c) What are the physical dimensions of Laplace- Runge-lenz vector \vec{A} ?
(d) What is the direction of the vector \vec{A} ?
(e) Write down the properties of SO (4) group.
(f) Show that the group generated by $L_{i j}(i, j=1,2,3,4)$ constitutes an SO (4) group.
3. (a) Obtain the matrix representation of the rotation operator $U_{R}\left(\delta \phi_{x}\right)$ which brings about a rotation of an arbitrary function $f(x, y, z)$ about the x axis through the infinitesimal angle $\left(\delta \phi_{x}\right)$.
(b) Using the relation $U_{R}\left(\phi_{x}\right)|\gamma, j m\rangle=\sum_{m^{\prime}}\left|\gamma, j m^{\prime}\right\rangle D_{m^{\prime} m}^{(j)}(\phi)$, obtain the new state function by the rotation of the p_{z} orbital about the x axis through the two angles (i) 60° and (ii) 90°. Of course, you should carry out the sum in the above expression explicitly.
(c) Finally, ensure that the rotated function is normalized.
(d) Show that $e^{\frac{-i \theta S_{x}}{\hbar}}=\left(\begin{array}{cc}\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\ -i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}\end{array}\right)$.
4. Let γ be the angle between two directions defined by spherical angles θ, φ and $\theta^{\prime}, \varphi^{\prime}$. Prove that $P_{l}\left(n . n^{\prime}\right)=\frac{4 \pi}{2 l+1} \sum_{m-l}^{l} Y_{l}^{m^{*}}\left(n^{\prime}\right) Y_{l}^{m}(n)$ where n and n^{\prime} are unit vectors and $Y_{l}^{m}(n)$ denotes the spherical harmonic function of the polar and azimuthal angle of the direction of n relative to a fixed coordinate system. This result is known as the Addition Theorem of Spherical harmonics.
5. (a) Prove that for a C.G. Coefficient to be non zero, m must be $m_{1}+m_{2}$.
(b) Prove that j is restricted to the range $j_{1}-j_{2} \leq j \leq j_{1}+j_{2}$.
(c) Also, prove that $j_{2}-j_{1} \leq j \leq j_{1}+j_{2}$.
(d) Obtain the condition $\left|j_{1}-j_{2}\right| \leq j \leq j_{1}+j_{2}$.
(e) Prove that the C.G. coefficients satisfy the condition
(i) $\sum_{m_{1} m_{2}}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j^{\prime} m^{\prime}\right\rangle=\delta_{m m^{\prime}} \delta_{i j j^{\prime}}$
(ii) $\sum_{m_{1} m_{2}}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j^{\prime} m^{\prime}\right\rangle=\delta_{m_{1} m_{1}}, \delta_{m_{2} m_{2}}$
[Remarks: These relations are known as Clebsh-Gordan Orthogonality relations]
6. Obtain the recursion relations for the Clebsch-Gordan coefficients
(a) $\sqrt{(j+m)(j-m+1)}\left\langle m_{1} m_{2} \mid j m+1\right\rangle=\sqrt{\left(j_{1}-m_{1}\right)\left(j_{1}+m_{1}+1\right)}\left\langle m_{1}+1, m_{2} \mid j m\right\rangle+$

$$
\sqrt{\left(j_{2}-m_{2}\right)\left(j_{2}+m_{2}+1\right)}\left\langle m_{1}, m_{2}+1 \mid j m\right\rangle
$$

(b) $\sqrt{(j-m)(j+m+1)}\left\langle m_{1} m_{2} \mid j m+1\right\rangle=\sqrt{\left(j_{1}+m_{1}\right)\left(j_{1}-m_{1}+1\right)}\left\langle m_{1}-1, m_{2} \mid j m\right\rangle+$

$$
\sqrt{\left(j_{2}+m_{2}\right)\left(j_{2}-m_{2}+1\right)}\left\langle m_{1}, m_{2}-1 \mid j m\right\rangle
$$

(c) Prove that $\sqrt{2 j}\left\langle j_{1}, j-j_{1} \mid j, j\right\rangle=\sqrt{2 j_{1}}\left\langle j_{1}-1, j-j_{1} \mid j, j-1\right\rangle+$

$$
\sqrt{\left(j_{2}+j-j_{1}\right)\left(j_{2}-j+j_{1}+1\right)}\left\langle j_{1}, j-j_{1}-1 \mid j, j-1\right\rangle
$$

(d) From the condition $\sqrt{2 j}\left\langle j_{1}, j-j_{1}-1 \mid j, j-1\right\rangle=\sqrt{\left(j_{2}-j+j_{1}+1\right)\left(j_{2}+j-j_{1}\right)}\left\langle j_{1}, j-j_{1} \mid j^{\prime} j\right\rangle$, Determine $\left\langle j_{1}, j-j_{1}-1 \mid j, j-1\right\rangle$, if $\left\langle j_{1}, j-j_{1} \mid j, j\right\rangle$ is known.
(e) Prove that
(i) $\left\langle j_{1} \frac{1}{2}, m-\frac{1}{2}, \frac{1}{2} \left\lvert\, j_{1} \frac{1}{2}\right., j_{1} \pm \frac{1}{2}, m\right\rangle= \pm \sqrt{\frac{j_{1} \pm m+\frac{1}{2}}{2 j_{1}+1}}$
(ii) $\left\langle j_{1} \frac{1}{2}, m+\frac{1}{2},-\frac{1}{2} \left\lvert\, j_{1} \frac{1}{2}\right., j_{1} \pm \frac{1}{2}, m\right\rangle= \pm \sqrt{\frac{j_{1} \mp m+\frac{1}{2}}{2 j_{1}+1}}$
7. (a) Generate the C.G. Coefficients table corresponding to $j_{1}=1$ and $j_{2}=\frac{1}{2}$
(b) Show that:
(i) $|(1,1) 2,-1\rangle=\frac{1}{\sqrt{2}}[|10,1-1\rangle+|1-1,10\rangle]$
(ii) $\quad|(1,1) 2,-2\rangle=|1-1,1-1\rangle$
(c) The 3 j symbol is defined as $\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & -m\end{array}\right)=\frac{\left\langle m_{1} m_{2} \mid j m\right\rangle}{(-1)^{j_{1}-j_{2}+m}(\sqrt{2 j+1})}$. Show that
(i) $\left(\begin{array}{ccc}j_{2} & j_{1} & j_{3} \\ m_{2} & m_{1} & m_{3}\end{array}\right)=(-1)^{j_{1}+j_{2}+j_{3}}\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3}\end{array}\right)$
(ii) $\left(\begin{array}{ccc}j_{2} & j_{1} & j_{3} \\ -m_{2} & -m_{1} & -m_{3}\end{array}\right)=(-1)^{j_{1}+j_{2}+j_{3}}\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3}\end{array}\right)$
(iii) $\left(\begin{array}{ccc}j & 1 & j \\ -j & 0 & j\end{array}\right)=\left(\frac{j}{(j+1)(2 j+1)}\right)^{\frac{1}{2}}$
(d) Prove that
(i) $(2 j+1) \sum_{m_{1}, m_{2}}\left(\begin{array}{ccc}j_{1} & j_{2} & j \\ m_{1} & m_{2} & -m\end{array}\right)\left(\begin{array}{ccc}j_{1} & j_{2} & j^{\prime} \\ m_{1} & m_{2} & -m^{\prime}\end{array}\right)=\delta_{i j^{\prime}} \delta_{m m^{\prime}}$
(ii) $\sum_{j}(2 j+1)\left(\begin{array}{ccc}j_{1} & j_{2} & j \\ m_{1} & m_{2} & -m\end{array}\right)\left(\begin{array}{ccc}j_{1} & j_{2} & j \\ m_{1}^{\prime} & m^{\prime} & -m\end{array}\right)=\delta_{m_{1} m_{1}} . \delta_{m_{2} m_{2}}$.
8. The Clebsh-Gordan coefficients are related to the Wigner 3j-symbols by the following relation:

$$
\left\langle m_{1} m_{2} \mid j m\right\rangle=(-1)^{j_{1}-j_{2}+m} \sqrt{2 j+1}\left(\begin{array}{ccc}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & -m
\end{array}\right)
$$

The explicit form of the Wigner 3j-symbols is given by eq (106.4) [page 436] of Ref.2. Use the formulae to write a numerical algorithm to evaluate the Wigner 3j-symbols and Clebsh-Gordan coefficients.
9. Using the Wigner-Eckart Theorem (cf. Ref. 4):

$$
\left\langle N^{\prime} j^{\prime} m^{\prime}\right| T_{\mu}^{\omega}|N j m\rangle A_{m \mu}^{j \omega j^{\prime}} \delta_{m^{\prime}, m+\mu}\left\langle N^{\prime} j^{\prime}\right|\left|T^{\omega}\right||N j\rangle
$$

(a) $|\Delta j|=\left|j-j^{\prime}\right| \leq \omega$
(b) $\Delta m=m^{\prime}-m=\mu \leq \omega$
(c) Establish the dipole selection rules $\Delta j= \pm 1,0$. For circularly polarized radiation about z-axis, $\mu= \pm 1=\Delta m$. For radiation polarized along the quantization axis, $\mu=0=\Delta m$
(d) Prove that the transition in which j goes from 0 to 0 is forbidden even if $\Delta j=0$.
(e) Show that dipole transition can take place only between states of opposite parity (Laporte rule).
10. (a) A sodium atom having its outer electron excited to a state with $n=3$ and $l=1$ is placed in a weak magnetic field. Spectral line A is the result of transition from $\left|1, \frac{1}{2}, \frac{3}{2},-\frac{1}{2}\right\rangle$ to $\left|0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\rangle$ and line B is the result of the transition from $\left|1, \frac{1}{2}, \frac{3}{2},-\frac{3}{2}\right\rangle$ to $\left|0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle$ wherin the coupled states are designated as $\left|L . S, J, M_{J}\right\rangle$. Find the ratio of the intensity of line A to that of line B using WignerEckart theorem and the table of CG coefficients.
(b) A sodium atom having its outer electron excited to a state with $n=3$ and $l=1$ is placed in a weak magnetic field. Spectral line A is the result of transition from $\left|1, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right\rangle$ to $\left|0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\rangle$ and line B is the result of the transition from $\left|1, \frac{1}{2}, \frac{3}{2},-\frac{1}{2}\right\rangle$ to $\left|0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle$ wherin the coupled states are designated as $\left|L . S, J, M_{J}\right\rangle$. Find the ratio of the intensity of line A to that of line B using WignerEckart theorem and the table of CG coefficients.
11. (a) Prove that for an operator to be a scalar it must commute with all components of the total angular momentum operator J .
(b) If χ is a scalar operator then prove that $\left\langle\Phi_{\alpha j m}\right| \chi\left|\Phi_{\alpha^{\prime} j^{\prime} m^{\prime}}\right\rangle=\lambda \delta_{\alpha \alpha^{\prime}} \delta j j^{\prime} \delta m m^{\prime}$, where λ is the eigen value of χ.
12. Consider spherical component of a vector operator given by

$$
V_{1}^{1}=-\frac{1}{\sqrt{2}}\left(V_{x}+i V_{y}\right), V_{0}^{1}=V_{x}, V_{-1}^{1}=\frac{1}{\sqrt{2}}\left(V_{x}-i V_{y}\right)
$$

If the vector operator is the total angular momentum J itself then show that:
(a) $\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| J_{q}|\alpha j m\rangle=\frac{1}{\sqrt{2 j^{\prime}+1}}\left\langle j 1 m q \| j^{\prime} m^{\prime}\right\rangle\left\langle\alpha^{\prime} j^{\prime} \| J_{q}\right||\alpha j\rangle$
(b) $\left\langle\alpha^{\prime} j^{\prime}\right| J|\alpha j\rangle=\sqrt{j(j+1)} \hbar \delta_{\alpha \alpha}, \delta j j^{\prime}$
(c) Prove that for any vector operator $\mathrm{V}\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| V|\alpha j m\rangle=C\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| J|\alpha j m\rangle$, where C is independent of m and m^{\prime}
(d) By setting $j^{\prime}=j$ and $\alpha^{\prime}=\alpha$ prove that the constant C is given by $C=\frac{\langle\alpha j m| V . J|\alpha j m\rangle}{j(j+1) \hbar^{2}}$.
(e) Prove that $j(j+1) \hbar^{2}\left\langle\alpha j m^{\prime}\right| V|\alpha j m\rangle=\langle\alpha j m| V . J|\alpha j m\rangle\left\langle\alpha j m^{\prime}\right| J|\alpha j m\rangle$
(f) Prove that $j(j+1) \hbar^{2}\left\langle\alpha j m^{\prime}\right| V|\alpha j m\rangle=\left\langle\alpha j m^{\prime}\right|(V . J) J|\alpha j m\rangle$.

Useful References:

1. Merzbacher, E., Quantum Mechanics, Wiley International Edition, 1970
2. L.D. Landau and E.M. Lifshitz, Quantum Mechanics' Third Edition. (Pergamom Press, 1985)
3. J.J.Sakurai, 'Modern Quantum Mechanics' Pearson Education.
4. Tinkham, 'Group theory and Quantum Mechanics', Tata McGraw-Hill Publishing Company Ltd, 1974.
5. Grenier, W. and Muller,B.; Quantum Mechanics Symmetries; Springer- Verlag Berlin, $2^{\text {nd }}$ edition (1989).
6. Bransden B.H and Joachin, C.J.: ,Physics of atome and molecules', Longman Group Limited, 1983
7. Schiff, L, ‘Quantum Mechanics', McGraw-Hill Book Company
8. John J Powell, Bernd Ceaseman, 'Quantum Mechanics’ Addison Wesely Publishing company, 1961.
