Χ

reviewer3@nptel.iitm.ac.in ▼

Courses » Introduction to Non-linear Optics and its Applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 10 - Week 8

Course outline

How to access the portal

Pre-requisite Assignment

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

- Lecture 36 : Sum frequency generation under OPA
- Lecture 37 : OPA under non-phase matching condition. Expression of gain
- Lecture 38 : Optical parametric Oscillator OPO) , Singly resonant oscillator
- Lecture 39 : Doubly Resonant Oscillator (DRO)
- Lecture 40 : Doubly Resonant Oscillator (DRO) (Cont)
- Quiz: Week 8 Assignment 8
- Feedback for Week 8

Week 9

Week 10

Week 11

Week 12

Download Videos

Week 8 Assignment 8

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2018-09-26, 23:59 IST.

For the process $\omega_p - \omega_s = \omega_i$ under undepleted pump approximation , governing equations of the fields corresponding to ω_s and ω_i are (where $\frac{\omega_{\chi}d_{eff}}{n_{\chi}c}$)

(a)
$$\frac{dA_{s}}{dz} = i\kappa_{s}A_{p}A_{i}^{*}$$

$$\frac{dA_{s}}{dz} = i\kappa_{i}A_{p}A_{s}^{*}$$
(b)
$$\frac{dA_{s}}{dz} = i\kappa_{i}A_{p}A_{s}^{*}e^{i\Delta kz}$$

$$\frac{dA_{s}}{dz} = i\kappa_{i}A_{p}A_{s}^{*}e^{i\Delta kz}$$
(c)
$$\frac{dA_{s}}{dz} = i\kappa_{i}A_{p}A_{s}^{*}e^{i\Delta kz}$$

$$\frac{dA_{s}}{dz} = i\kappa_{i}A_{p}A_{s}^{*}e^{i\Delta kz}$$
(d)
$$\frac{dA_{s}}{dz} = i\kappa_{i}A_{p}A_{s}^{*}e^{i\Delta kz}$$

$$\frac{dA_{s}}{dz} = i\kappa_{i}A_{p}A_{s}^{*}e^{i\Delta kz}$$

$$\frac{A_i}{dz} = i\kappa_i A_p A_s^* e^{i\Delta kz}$$
 (d) $\frac{dA_i}{dz} = i\kappa_i A_p A_s^* e^{i\Delta kz}$

- (a) (b)
- (c)
- (d)

No, the answer is incorrect.

Score: 0

Accepted Answers: (d)

2 points

For Q1 the governing equation for the field corresponding to ω_s ($A_s(z)$ (where $g^2 = \kappa_s \kappa_i |A_n|^2$)

$$(a)\frac{d^2A_s}{dz^2} - i\Delta k \frac{dA_s}{dz} + g^2 A_s = 0$$

$$(c)\frac{d^2 A_s}{dz^2} - g^2 A_s = 0$$

(b)
$$\frac{d^2 A_s}{dz^2} + i\Delta k \frac{dA_s}{dz} - g^2 A_s =$$
(d)
$$\frac{d^2 A_s}{dz^2} - i\Delta k \frac{dA_s}{dz} - g^2 A_s =$$

- (a)
- (b)
- (c) (d)

© 2014 NPTEL - Privacy & Terms - Honor Code - FAOs -In association with

Powered by

Funded by

G

A project of

1 of 4

In a *Singly Resonant Oscillator* (SRO) the value of the frequency mode spacing (/ when the length and refractive index of the nonlinear crystal, works as a cavity, ar cm and 1.75 respectively.

(a) 2.44 GHz (b) 0.61 GHz (c) 1.22 GHz (d) 0.305 GHz

In a SRO the threshold gain is given as, $g_{th} = \frac{\sqrt{2}}{l} \left(\frac{1}{\sqrt{R_1 R_2}} - 1 \right)^{1/2}$, the symbols h

their usual meanings. The expression for threshold pump intensity (I_{th}) is

(a)
$$\frac{1}{2}\epsilon_0 c n_p \frac{c^2}{d^2} \left(\frac{n_p n_i}{\omega_s \omega_i}\right) g_{th}^2$$

(b)
$$\frac{1}{2}\epsilon_0 cn_p \frac{c^2}{d^2} \left(\frac{n_s n_i}{\omega_p \omega_i}\right) g_{th}^2$$

(c)
$$\frac{1}{2}\epsilon_0 cn_p \frac{c^2}{d^2} \left(\frac{n_s n_i}{\omega_s \omega_i}\right) g_{th}^2$$

(d)
$$\frac{1}{2}\epsilon_0 c n_p \frac{c^2}{d^2} \left(\frac{n_s n_i}{\omega_s \omega_p}\right) g_{th}^2$$

(a)
(b)
(c)
(d)

No, the answer is incorrect.
Score: 0

Accepted Answers:

(0)

2 points

The optical parametric oscillation (OPO) process takes place when

(a)
$$\omega_p = \omega_s + \omega_i$$

(b)
$$k_p = k_s + k_i$$

(c)
$$n_p \omega_p = n_s \omega_s + n_i \omega_i$$

(a)
(b)
(c)
(d)

No, the answer is incorrect.

Accepted Answers:

6)

2 points

In a Singly Resonant Oscillator (SRO) find out the wavelength spacing between th and 2^{nd} mode when the length and refractive index of the nonlinear crystal, works cavity, are 5 cm and 2 respectively.

(a) 5 cm	(b) 10 cm	(c) 2.5 cm	(d) 1.25 cm	
(a) (b) (c)				
No, the answer is in Score: 0				
Accepted Answers: (b) 7)			2 points	

The threshold pump intensity of SRO in a crystal of length 2 cm. ($0.9~\mu m; \lambda_s = 1.2~\mu m. d_{eff} = 1.2~pm/V)$ is, (The refractive indices are same fo the wavelengths (n=1.7). The reflectivity for both the mirrors are 0.9).

(a) 6.88 MW/cm^2

(b) 3.44 MW/cm^2

(c) 13.76 MW/cm^2

(d) 0.5 MW/cr

The threshold gain parameter (g_{th}) of SRO in a crystal of length 1.5 cm is (reflectivity for both the mirrors are 0.9 and 0.95).

(a) $20.3 m^{-1}$

(b) $26.9 m^{-1}$

(c) $30.1 \, m^{-1}$

(d) $40.2 m^{-1}$

The threshold gain (g_{th}) for a DR-OPO for a 2 cm crystal is , if the mi reflectivity for the signal is 0.95 and idler is 0.6 .

(a) $14.14 \ m^{-1}$

(b) $26.9 m^{-1}$

(c) $7.07 m^{-1}$

(d) $3.05 m^{-1}$

(a) (b)

(c) (d) No, the answer is incorr Score: 0 Accepted Answers: (c)	ect.					
10)			2 points			
What is the ratio of the required pump power for the occurrence of a DRO pro						
and the SRO pro	cess if the reflectivit	y of the mirror for th	ne idler is 0.70.			
(a) 0.15	(b) 0.30	(c) 0.60	(d) 0.05			
(a) (b) (c) (d) No, the answer is incorr Score: 0 Accepted Answers:	ect.					
Previous Pa	ge		End			