

reviewer3@nptel.iitm.ac.in ▼

Courses » Introduction to Non-linear Optics and its Applications

Announcements Course Ask a Question Progress Mentor FAQ

## Unit 8 - Week 6

| ourse outline                                                       | Week 6 Ass                        | ignment 6                                                              |                                 |                           |  |
|---------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|---------------------------------|---------------------------|--|
| ow to access the ortal                                              |                                   | tting this assignment has passed.<br>have not submitted this assignmen | Due on 2018-09-12, 23:59 IST.   |                           |  |
| re-requisite<br>ssignment                                           | For type-1 sec                    | cond harmonic genera                                                   | tion and for an incid           | 2 poin<br>dent beam of 10 |  |
| eek 1                                                               |                                   | .06 $\mu m$ . Calculate the                                            |                                 |                           |  |
| eek 2                                                               | perfectly pha                     | se matched 2.5 cm                                                      |                                 |                           |  |
| eek 3                                                               | 1.5, $d_{eff} = 0.2$              | $28 \times 10^{-12} m/V).$                                             |                                 |                           |  |
| eek 4                                                               | (a) 1.7%                          | (b) 7%                                                                 | (c) 17%                         | (d) 34%                   |  |
| eek 5                                                               |                                   |                                                                        |                                 |                           |  |
| eek 6                                                               | (a)                               |                                                                        |                                 |                           |  |
| Lecture 26 : SHG in<br>KDP crystal,<br>Calculation of deff          | (b)                               |                                                                        |                                 |                           |  |
| Lecture 27: SHG in LiNbO3                                           | (d) No, the answer is inco        | rrect.                                                                 |                                 |                           |  |
| Lecture 28 : Quasi<br>phase matching<br>(QPM)                       | Score: 0 Accepted Answers: (c)    |                                                                        |                                 |                           |  |
| Lecture 29 : Quasi                                                  | 2)                                |                                                                        |                                 | 2 poi                     |  |
| phase matching<br>(QPM) (cont),<br>Periodic d function              | •                                 | stal where Second Harr                                                 |                                 | ,                         |  |
| Lecture 30 : 1st, 2nd,<br>3rd order QPM, SHG<br>under depleted pump |                                   | ave at $\lambda = 1.55 \mu m$ for es of the crystal at $\lambda$       |                                 |                           |  |
| Quiz : Week 6<br>Assignment 6                                       |                                   | d $n = 1.59892$ respecti                                               | -                               |                           |  |
| Feedback for Week 6                                                 | crystal is appro                  | oximately. (For the cry                                                | stal $a_{eff} = 0.28 \times 10$ | $J^{-12}m/V$ ).           |  |
| ek 7                                                                | (a) $10^{-3}$                     | (b) $10^{-6}$                                                          | (c) $10^{-9}$                   | (d) $10^{-1}$             |  |
| ek 8                                                                |                                   |                                                                        |                                 |                           |  |
| ek 9                                                                | (a) (b)                           |                                                                        |                                 |                           |  |
| ek 10                                                               | (c)                               |                                                                        |                                 |                           |  |
| ek 11                                                               | (d)                               |                                                                        |                                 |                           |  |
| ek 12                                                               | No, the answer is income Score: 0 | rrect.                                                                 |                                 |                           |  |
|                                                                     | Accepted Answers:                 |                                                                        |                                 |                           |  |

NATIONAL PROGRAMME ON TECHNOLOGY Enhanced Learning

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs In association with



Funded by

Government of India

Ministry of Human Resource Development



Consider a crystal where  $2^{\rm nd}$  order *Quasi Phase Matching* (QPM) is achieved *Second Harmonic Generation* (SHG) with the fundamental wave at  $\lambda = 1.55 \, \mu m$ . refractive indices of the crystal at  $\lambda = 1.55 \, \mu m$  and  $\lambda = 0.775 \, \mu m$  are given n = 1.56891 and n = 1.59892 respectively. The period of nonlinearity ( $\Lambda$ ) is

| (a) 52μm                      | (b) 26 <i>μm</i> | (c) 78μm | (d) $100\mu m$ |        |
|-------------------------------|------------------|----------|----------------|--------|
| (a) (b) (c) (d)               |                  |          |                |        |
| No, the answer is in Score: 0 | correct.         |          |                |        |
| Accepted Answers:             |                  |          |                |        |
| 4)                            |                  |          | 2 μ            | ooints |

Consider a crystal where 1<sup>st</sup> order *Quasi Phase Matching* (QPM) is achieved *Second Harmonic Generation* (SHG) with the fundamental wave at  $\lambda = 1.06 \,\mu m$  refractive indices of the crystal at  $\lambda = 1.06 \,\mu m$  and  $\lambda = 0.53 \,\mu m$  are given as, n = 1.52 respectively. The period of nonlinearity ( $\Lambda$ ) is

(a) 53μm (b) 26.5 μm (c) 13.25μm (d) 75μm

(a) (b) (c) (d)

No, the answer is incorrect. Score: 0

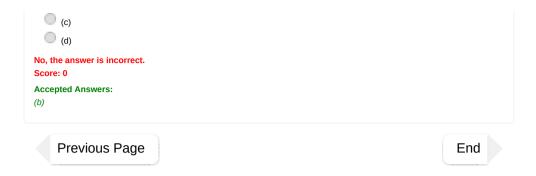
Accepted Answers: (b)

5) 2 points

The third order QPM periodicity for a second harmonic  $(e \rightarrow e + e)$  process in lith tantalite with  $\hat{k}$  along the x-axis is (the fundamental wavelength is 1.064 $\mu$   $(n(\omega) = 2.145$ ;  $n(2\omega) = 2.215$ )

(a) 11.4μm (b) 7.6 μm (c) 22.8μm (d) 34.2μm

(a) (b) (c) (d)


No, the answer is incorrect.
Score: 0

Accepted Answers: (c)

6) 2 points

The first order QPM periodicity for a sum frequency  $(\omega_2 + \omega_3 \rightarrow \omega_s)$  gener process  $(e + e \rightarrow e)$  process in lithium niobate with  $\hat{k}$  along the x-axis is .  $(n(\omega_2) = 2.233; n(\omega_3) = 2.211; n(\omega_s) = 2.287)$ . Given  $\lambda_2 = 1.064 \mu m$ ,  $\lambda_3 = 1.550 \mu m$ . (a)  $10 \mu m$  (b)  $20 \mu m$  (c)  $5 \mu m$  (d)  $15 \mu m$ 

| (a)                                           |                               |                                             |                                       |
|-----------------------------------------------|-------------------------------|---------------------------------------------|---------------------------------------|
| (a)                                           |                               |                                             |                                       |
| (c)                                           |                               |                                             |                                       |
| (d)                                           |                               |                                             |                                       |
| No, the answer is incorred<br>Score: 0        | ct.                           |                                             |                                       |
| Accepted Answers:                             |                               |                                             |                                       |
| (a)                                           |                               |                                             |                                       |
| 7)                                            |                               |                                             | 2 points                              |
| $d_{eff}$ for a first or                      | rder QPM interac              | tion is maximized for                       | a structure that has a                |
| cycle                                         |                               |                                             |                                       |
| (a) 25%                                       | (b) 30%                       | (c) 50%                                     | (d) 70%                               |
|                                               |                               |                                             |                                       |
| (a)                                           |                               |                                             |                                       |
| (b)                                           |                               |                                             |                                       |
| (c)                                           |                               |                                             |                                       |
| (d)                                           |                               |                                             |                                       |
| No, the answer is incorred                    | ct.                           |                                             |                                       |
| Score: 0 Accepted Answers:                    |                               |                                             |                                       |
| (c)                                           |                               |                                             |                                       |
| 8)                                            |                               |                                             | 2 points                              |
| $d_{eff}$ for a third of                      | rder QPM intera               | ction is maximized fo                       | or the value of <i>D</i>              |
| (a) 1/3                                       | (b) 1/4                       | (c) 1/5                                     | (d)1/6                                |
|                                               |                               |                                             |                                       |
| (a)                                           |                               |                                             |                                       |
| (b)                                           |                               |                                             |                                       |
| (c)                                           |                               |                                             |                                       |
| (d)                                           |                               |                                             |                                       |
| No, the answer is incorre                     | ct.                           |                                             |                                       |
| Score: 0                                      |                               |                                             |                                       |
| Accepted Answers:                             |                               |                                             |                                       |
| (d)                                           |                               |                                             | 2 nainte                              |
| 9)                                            |                               | .1 .6 1                                     | 2 points (1)                          |
|                                               |                               |                                             | otibility $\chi_{ii}^{(1)}$ transform |
| $(a)\chi_{ii}^{\prime(1)} = -\chi_{ii}^{(1)}$ | (b) $\chi_{ii}^{\prime(1)} =$ | $=\chi_{ii}^{(1)}$ (c) $\chi_{ii}^{'(1)} =$ | = 0 (d) none of these                 |
|                                               |                               |                                             |                                       |
| (a)                                           |                               |                                             |                                       |
| (b)                                           |                               |                                             |                                       |
| (c)                                           |                               |                                             |                                       |
| (d)                                           |                               |                                             |                                       |
| No, the answer is incorred Score: 0           | ct.                           |                                             |                                       |
| Accepted Answers:                             |                               |                                             |                                       |
| (b)                                           |                               |                                             |                                       |
| 10)                                           |                               |                                             | 2 points                              |
|                                               | tric medium whi               | ch order of susceptib                       | oility is non-zero.                   |
| (a) $\chi^{(2)}$                              | (b) $\chi^{(5)}$              | (c) $\chi^{(8)}$                            | (d) $\chi^{(10)}$                     |
|                                               |                               |                                             |                                       |
| (a)                                           |                               |                                             |                                       |
| (b)                                           |                               |                                             |                                       |
|                                               |                               |                                             |                                       |

