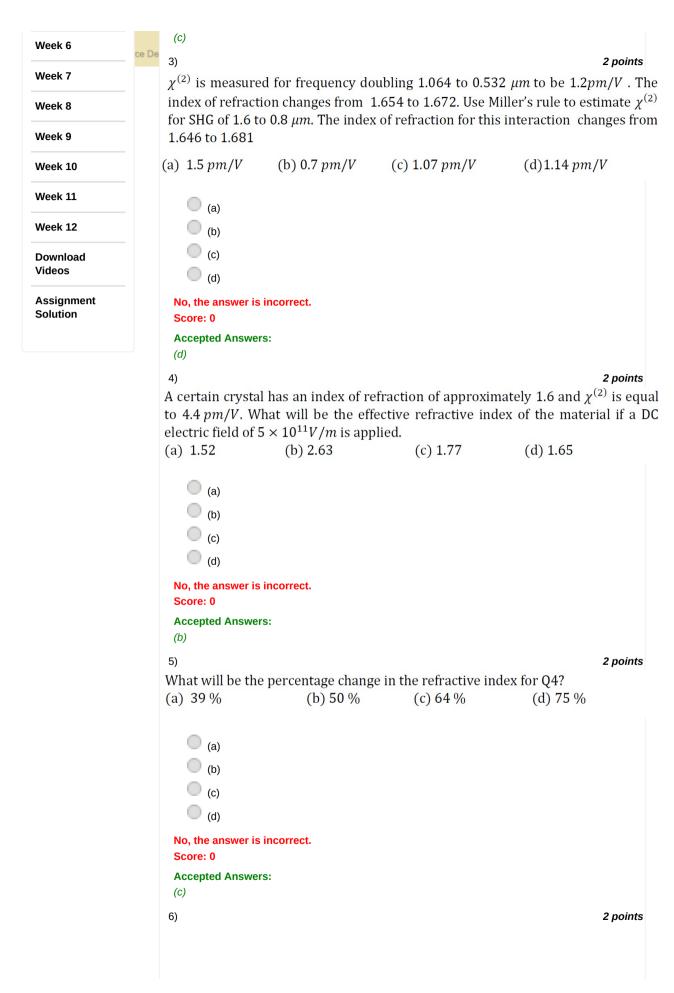
reviewer3@nptel.iitm.ac.in ▼

## Courses » Introduction to Non-linear Optics and its Applications

Ask a Question Announcements FAQ Course **Progress** Mentor

## **Unit 6 - Week** 4


| outline                                                                 | Week 4 Assignment                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                         | The due date for submitting this assignment has passed.                                                                                                                                                                                                                                                 |  |  |  |  |
| How to access<br>the portal                                             | As per our records you have not submitted this assignment.  Due on 2018-09-05, 23:59 IST.                                                                                                                                                                                                               |  |  |  |  |
| Pre-requisite<br>Assignment                                             | 1)                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Week 1                                                                  | to 6 $pm/V$ .A different material is discovered to have refractive index of 1.8.Us Miller's rule to estimate $\chi^{(2)}$ in the new material                                                                                                                                                           |  |  |  |  |
| Week 2                                                                  | (a) $0.79  nm/V$ (b) $0.79  pm/V$ (c) $0.50  nm/V$ (d) $0.50  pm/V$                                                                                                                                                                                                                                     |  |  |  |  |
| Week 3                                                                  |                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Week 4                                                                  | (a) (b)                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| <ul><li>Lecture 16 :<br/>Nonlinear<br/>Maxwell's<br/>equation</li></ul> | (c)<br>(d)                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Lecture 17 :<br>Theory of SHG                                           | No, the answer is incorrect. Score: 0                                                                                                                                                                                                                                                                   |  |  |  |  |
| Lecture 18 :<br>Phase<br>matching                                       | Accepted Answers: (a) 2) 2 points                                                                                                                                                                                                                                                                       |  |  |  |  |
| Phase matching of SHG, Gain band width calculation                      | $\chi^{(2)}$ is measured for frequency doubling 1.064 to 0.532 $\mu m$ to be 1.2 $pm/V$ . Th index of refraction changes from 1.654 to 1.672. Use Miller's rule to estimate $\chi^{(2)}$ for SHG of 1.6 to 0.8 $\mu m$ . The index of refraction for this interaction is 1.646 fo both the wavelengths. |  |  |  |  |
| • Lecture 20 :<br>Manley-Rowe<br>Relation,<br>Energy<br>conservation in | (a) 1.5 pm/V (b) 0.7 pm/V (c) 1.07 pm/V (d)1.7 pm/V  (a) (a) (b)                                                                                                                                                                                                                                        |  |  |  |  |

A project of





Funded by



A phase-matching configuration is possible in beta-barium borate (BBO) in which two separate non-collinear beams at  $\lambda_1$  generate a second harmonic beam at  $\lambda_2$ . If the effective refractive indices at the two wavelengths are  $n_1$  and  $n_2$ , respectively, the angle between the two fundamental beams is (b)  $\cos^{-1} \left\{ \frac{1}{2} \left( \frac{n_2 \lambda_1}{n_1 \lambda_2} \right)^2 - 1 \right\}$ (d)  $\cos^{-1} \left\{ \frac{1}{2} \left( \frac{n_1 \lambda_1}{n_2 \lambda_2} \right)^2 + 1 \right\}$ (a)  $\cos^{-1} \left\{ \frac{1}{2} \left( \frac{n_2 \lambda_1}{n_1 \lambda_2} \right)^2 + 1 \right\}$ (c)  $\cos^{-1} \left\{ \frac{1}{2} \left( \frac{n_1 \lambda_1}{n_2 \lambda_2} \right)^2 - 1 \right\}$ No, the answer is incorrect. Score: 0 **Accepted Answers:** (b) 7) 2 points A phase-matching configuration is possible in beta-barium borate (BBO) in which two separate non-collinear beams at 1.064 µm generate a second harmonic beam at  $0.532 \mu m$ . If the effective refractive indices at the two wavelengths are 1.65500and 1.55490, respectively, the angle between the two fundamental beams is (b) 40.06° (a) 20.03° (c)  $30.1^{\circ}$ (d) 0° (c) (d) No, the answer is incorrect. Score: 0 **Accepted Answers:** (b) 8) 2 points For Q7, find the angle between the fundamental beam and the SHG beam. (b) 40.06° (c)  $30.1^{\circ}$ (d) 0° (a) 20.03° (d) No, the answer is incorrect. Score: 0 **Accepted Answers:** (a) 9) 2 points

Consider second harmonic generation in lithium niobate for a fundamental field whose (vacuum) wavelength is 1.064  $\mu m.$  If the effective refractive indices are 2.2339 and 2.2294 for the fundamental and second harmonic fields, respectively, find the coherence length.

| (a) 29.55 μm                                    | (b) 108.22 μm                  | (c) 20.51 μm                                       | (d) 59.11 μm                            |          |
|-------------------------------------------------|--------------------------------|----------------------------------------------------|-----------------------------------------|----------|
| (a)<br>(b)                                      |                                |                                                    |                                         |          |
| (c)                                             |                                |                                                    |                                         |          |
| (d)                                             |                                |                                                    |                                         |          |
| No, the answer is in Score: 0 Accepted Answers: |                                |                                                    |                                         |          |
| 10)                                             |                                |                                                    |                                         | 2 points |
| The refractive ind                              | lex change $\sqrt{1+\chi^{(}}$ | $\sqrt{1+\chi^{(1)}+2}$ to $\sqrt{1+\chi^{(1)}+2}$ | $2\chi^{(2)}E_{DC}$ is $\Delta n \cong$ |          |
| (a) $\chi^{(1)}E_{DC}/n$                        | (b) $\chi^{(1)}E_{DC}$         | (c) $\chi^{(2)}E_{DC}/n$                           | (d) $\chi^{(2)}E_{DC}$                  |          |
| (a) (b) (c) (d)                                 |                                |                                                    |                                         |          |
| No, the answer is in Score: 0                   | ncorrect.                      |                                                    |                                         |          |
| Accepted Answers:                               |                                |                                                    |                                         |          |
| (c)                                             |                                |                                                    |                                         |          |

Previous Page

End