

reviewer3@nptel.iitm.ac.in ▼

Courses » Introduction to Non-linear Optics and its Applications

Announcements Course Ask a Question **Progress** Mentor FAQ

| Course outline                                                                             | Assignment 2                                                                                                              |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| How to access the portal                                                                   | The due date for submitting this assignment has passed.  As per our records you have not submitted this assignment.       |
| Pre-requisite<br>Assignment                                                                | consider a wave propagating along the x-axis of a uniaxia                                                                 |
| Week 1                                                                                     | are the allowed wave solutions polarised                                                                                  |
| Week 2                                                                                     | (a)x and y direction (b) x and z direction (c) z and y                                                                    |
| Lecture 06 : Basic<br>Linear Optics (contd.)  Lecture 07 : Basic<br>Linear Optics (contd.) | (a) (b)                                                                                                                   |
| Lecture 08 : Basic Linear Optics (contd.)                                                  | (c)                                                                                                                       |
| Lecture 09 : Basic Linear Optics (contd.)                                                  | No, the answer is incorrect. Score: 0                                                                                     |
| Lecture 10 : Nonlinear<br>Optics : An<br>Introduction                                      | Accepted Answers: (C) 2)                                                                                                  |
| Quiz : Assignment 2                                                                        | If a plane wave has an electric field given by                                                                            |
| Feedback for Week 2                                                                        | $sin(kz - \omega t + \phi)$ $\hat{x}$ . The complex amplitude of the fie                                                  |
| Veek 3                                                                                     | $ ($ $\pi)$ $ ($ $\pi)$                                                                                                   |
| Neek 4                                                                                     | (a) $\frac{E_0}{2} e^{i\phi}$ (b) $\frac{E_0}{2} e^{i(\phi + \frac{R}{4})}$ (c) $\frac{E_0}{2} e^{i(\phi + \frac{R}{2})}$ |
| Week 5                                                                                     | (a)                                                                                                                       |
| Veek 6                                                                                     | (a) (b)                                                                                                                   |
| Week 7                                                                                     | (c)                                                                                                                       |
| Week 8                                                                                     | (d)                                                                                                                       |
| Week 9                                                                                     | No, the answer is incorrect. Score: 0                                                                                     |
| Week 10                                                                                    | Accepted Answers: (b)                                                                                                     |
| Week 11                                                                                    | 3)                                                                                                                        |
| Week 12                                                                                    | If the above (Q2) wave is incident on a metal with a                                                                      |
| Download Videos                                                                            | $\chi_0(1-i\sqrt{3})/2$ . Calculate the phase shift between the                                                           |
| Assignment Solution                                                                        | by the field and the incident field. (a)0° (b) 60° (c) 90° (d) 120°                                                       |

on 2018-08-15, 23:59 IST.

2 points

ıl medium. In what dired

direction

 $\vec{E} = \frac{E_0}{\sqrt{2}} \{ \cos(kz - \omega t +$ d will be

 $(d) \frac{E_0}{2} e^{i\left(\phi + 3\frac{\pi}{4}\right)}$ 

2 points

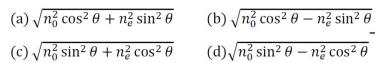
susceptibility given by

linear polarization ind

A project of

(a)

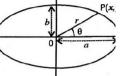
© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -


G+ Funded by



Accepted Answers:

2 points


In the figure the surface of an extraordinary wave surface in a positive cryst shown whose optic axis is along OX . What is the ray refractive index  $(n_{\theta})$  of medium at an angle  $\theta$  to the optic axis.



(b) 
$$\sqrt{n_0^2 \cos^2 \theta - n_e^2 \sin^2 \theta}$$

(c) 
$$\sqrt{n_0^2 \sin^2 \theta + n_e^2 \cos^2 \theta}$$

$$(d)\sqrt{n_0^2\sin^2\theta-n_e^2\cos^2\theta}$$



(a)

(b)

(c)

(d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

(a)

5) 2 points

If the plane of vibration of incident beam makes an angle of 30° with the optic compare the intensities of ordinary and extraordinary rays

(a)3

(b)  $\frac{1}{3}$ 

(c)  $\frac{1}{2}$ 

(a) (b)

(c) (d)

No, the answer is incorrect.

Score: 0

**Accepted Answers:** 

Find the principal indices of refraction for the following relative dielectric tensor

 $\vec{\epsilon}_r = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2.5 & 0.5 \\ 0 & 0.5 & 2.5 \end{bmatrix}$ 

(a) 4,4,1

(b) 6,2,1.

(c) 2,3,4 (d) 3,3,3

(a)

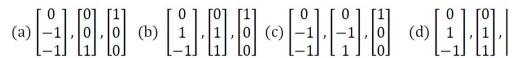
(b)

(c) (d)

No, the answer is incorrect.

Score: 0

**Accepted Answers:** 


(c)

7)

2 points

2 points

Find the direction of the principal axes for the above relative dielectric tensor(Q6





An electric field in a material that has the above dielectric tensor(Q6) has a comamplitude,  $\vec{E} = \frac{E_0}{\sqrt{3}}(\hat{x} + \hat{y} + \hat{z})$ . Find the angle between  $\vec{E}$  and the displacer vector  $(\vec{D})$ 

(a) 0° (b) 0.1°. (c) 8° (d) 20°

(a) (b) (c) (d)

No, the answer is incorrect.

Score: 0

Accepted Answers: (c)

A plane wave propagates along a direction given by  $\hat{\chi} = \frac{1}{\sqrt{2}}\hat{x} + \frac{1}{\sqrt{2}}\hat{z}$  in the un medium with  $n_o = 2.35$  and  $n_e = 2.24$ . What is the angle made by the Pointing v  $\vec{s}$  of the e-wave with z-axis.

(a) 0° (b) 23° (c) 47° (d) 53°

(a) (b) (c) (d)

No, the answer is incorrect.

Score: 0

Accepted Answers: (c)

10) 2 points

BBO is used in a second harmonic generation experiment. The fundam wavelength is  $\lambda=1.064~\mu m$ , and the angle between the direction of propag and the optic axis is 22.8°. Find the value of walk off angle (BBO refractive in at  $0.532\mu m$ :  $n_0=1.67421$ ,  $n_e=1.55490$ .)

(a) 26.008° (b) 22.8° (c) 3.2° (d) 10.5°

| (b)<br>(c)<br>(d)                        |     |
|------------------------------------------|-----|
| No, the answer is incorrect.<br>Score: 0 |     |
| Accepted Answers:<br>(c)                 |     |
| Previous Page                            | End |