ourses » Introduction to	Non-linear Optics and its Ap	plications				
Jnit 14 - Weel	< 12	Announcements Co	urse Ask a Question	Progress	Mentor	FAQ
Course outline	Week 12 Ass	ignment 12				
How to access the portal	The due date for submitting this assignment has passed.Due on 2018-10-24, 23:59 IsAs per our records you have not submitted this assignment.				:59 IST	
Pre-requisite Assignment	1) If a Gaussian puls	e is launched into	a dispersive system	n the temp	oral dist	2 poir ributic
Week 1	pulse will			in the temp	order delot	
Week 2						
Week 3	(a) Shrink	(b) Broaden	(c) remain	intact		
Week 4	(a)					
Week 5	(a)					
Week 6	(c)					
Week 7	No, the answer is incorre Score: 0	ct.				
Week 8	Accepted Answers:					
Week 9	(b) 2)					2 poi
Week 10		ening phenomenor	takes place in pres	sence of		
Week 11				C there		
Week 12	(a) Dispersion	(b) Nonlineari	cy (c) none o	f these		
 Lecture 56 : Raman Amplification Lecture 57 : Raman Amplification (Cont) 	(a) (b) (c)					
Lecture 58 : Linear pulse propagation	No, the answer is incorre Score: 0	ct.				
Lecture 59 : Nonlinear Pulse propagation	Accepted Answers: (b)					
Lecture 60 : Optical Soliton	3)				(<u>-</u> 2)	2 poi
Quiz : Week 12 Assignment 12		ulse of temporal o				
Download Videos		nporal width mod	1		1	$ p_2 $
Assignment Solution	(a) $T_0 \left[1 - \left(\frac{z}{L_D}\right)^2 \right]$	(b) $T_0 \left[1 + \right]$	$-\left(\frac{2z}{L_D}\right)^2 \bigg]^2$ (C)	$T_0 \left[1 + \left(\frac{1}{L} \right) \right]$	$\left(\frac{z}{D}\right)^{2}$	
	(a) (b)					
	© 2014 NPTEL -	Privacy & Terms - Honor Code	- FAQs -			

Introduction to Non-linear Optics and its Applica...

4)

2 points

For an input Gaussian pulse of width 100 ps what will be the width of output pulse propagating a distance $z = 3L_d$ in a dispersive optical medium

(a) 316.2 ps (b) 100 ps (c) 223.6 ps (d) 50 ps 🔵 (a) (b) (c) (d) No, the answer is incorrect. Score: 0 Accepted Answers: (a) 5) 2 points

The dispersive length of a pulse of width 50 fs in a dispersive medium with parameter ($\beta_2 = -0.2 \ ps^2/m$) is

(a) 1.25 <i>m</i>	(b) 1.25 <i>cm</i>	(c) 12.5 <i>cm</i>	(d) 125 cm	
(a)				
🔘 (b)				
(c)				
(d)				
No, the answer is incorre	ect.			
Score: 0				
Accepted Answers:				
(b)				
6)				2 points
The nonlinear la	where $f = 25 f c$	nulsa of a nulsa	of nower 50 mW	and wavel

The nonlinear length of a 25fs pulse of a pulse of power 50 mW and wavele 1550 nm in a nonlinear optical medium of effective area $0.51 \,\mu m^2$ is, $(n_2 =$ $10^{-18} m^2 W^{-1}$)

```
(a) 83 m
                   (b)0.83 cm
                                        (c) 83 cm
                                                                 (d) 0.83 mm
  🔵 (a)
  (b)
  (c)
  (d)
No, the answer is incorrect.
Score: 0
Accepted Answers:
(C)
7)
                                                                                          2 points
```

The ratio of the nonlinear length to the dispersion length for the pulse described in (approximately ($\beta_2 = 0.075 \ ps^2/m$;)

(a) (b)	
(c) (d)	

Introduction to Non-linear Optics and its Applica...

https://onlinecourses.nptel.ac.in/noc18_ph10/un...

```
No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (b)
 8)
                                                                                              2 points
For a fundamental optical soliton the relation between nonlinear length (L_{NL})
dispersion length L_D is
  (a) L_D > L_{NL} (b) L_D < L_{NL} (c) L_D = L_{NL} (d) L_D \gg L_{NL}
   (a)
   🔘 (b)
   (c)
   (d)
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (C)
 9)
                                                                                              2 points
If L_D = 4L_{NL} then the order (N) of the generated optical soliton is
                     (b) 4
                                     (c) 0.5
                                                        (d) 2
  (a) 1
   🔵 (a)
   (b)
   (c)
   (d)
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (d)
 10)
                                                                                              2 points
The form (u(\xi, \tau)) for a dark soliton in a nonlinear medium is
(a) Sech(\tau)e^{\frac{i\xi}{2}} (b) tanh(\tau)e^{\frac{i\xi}{2}} (c) Sinh(\tau)e^{\frac{i\xi}{2}} (d) Sech(\tau) tanh(\tau)e^{\frac{i\xi}{2}}
   🔵 (a)
   (b)
   (c)
   🔵 (d)
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (b)
      Previous Page
                                                                                         End
```