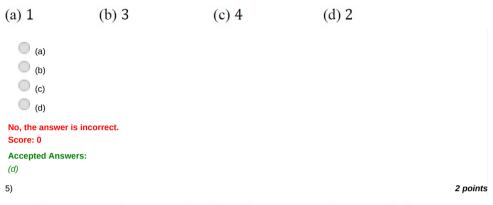


0 2021110 122		G+
project of	In association with	Funded by
National Programme on Technology Enhanced Learning	NASSCOM®	Government of India Ministry of Human Resource Development
	Powered by	

Allino .


Introduction to Non-linear Optics and its Applica...

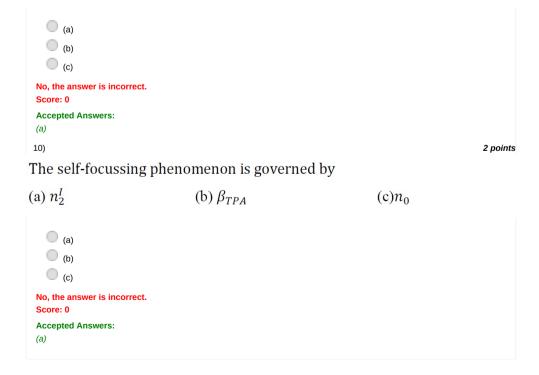
2 points

(c)
 (d)
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (d)
 4)

The nonlinear polarization for Centrosymmetric molecule is $P_{NL} = \varepsilon_0 \chi^{(3)} E^3$. Co the electric field as $E = E_0 \cos(\omega t)$. The no of frequencies in the output will be

The change in refractive index (Δn) due to cross phase modulation when a l with 1W power falls on a medium of cross-sectional area $1mm^2$ ($n_2 = 10^{-18}m^2/W$)

(a) 6×10^{-14}	(b) 16×10^{-12}	(c) 12×10^{-12}	(d) 3×10^{-13}
(a) (b) (c) (d)			
No, the answer is incorrect. Score: 0			
Accepted Answers: (C)			
6)			2 points


For centrosymmetric material (invariant under inversion) which of the followir correct (Hint: consider the transformation operation corresponding to a 45° rota about the z-axis)

(a)
$$\chi_{xxxx}^{(3)} = \chi_{xxyy}^{(3)} + \chi_{xyyx}^{(3)} + \chi_{xyxy}^{(3)}$$

(b) $\chi_{xxxx}^{(3)} = \chi_{xxyy}^{(3)} + \chi_{xyyx}^{(3)}$
(c) $\chi_{xxxx}^{(3)} = \chi_{xxyy}^{(3)} + \chi_{xyxy}^{(3)}$
(a)
(b)
(c)
No, the answer is incorrect.
Score: 0
Accepted Answers:

(a)
7) **2** points
If
$$\chi^{(3)}$$
 is complex, then the nonlinear absorption coefficient β in terms of imag
part of $\chi^{(3)}$ is
(a) $\frac{3\omega}{2\epsilon_0 n^2 c^2} Im[\chi^{(3)}]$ (b) $\frac{3\omega}{4\epsilon_0 n^2 c^2} Im[\chi^{(3)}]$ (c) $\frac{3\omega}{\epsilon_0 n^2 c^2} Im[\chi^{(3)}]$
(a)
(a)
(b)
(c)
No, the answer is incorrect.
Score: 0
Accepted Answers:
(a)
8) **2** points
Following from the Q7 the value of β for silicon at 1550 nm is $(n = 3.5; Im[\chi^{1}]$
 $3 \times 10^{-20} m^2/V^2)$
(a) $4.6 \times 10^{-12} m/W$ (b) $6.6 \times 10^{-13} m/W$ (c) $5.6 \times 10^{-12} m/I$
(a)
(b)
(c)
No, the answer is incorrect.
Score: 0
Accepted Answers:
(c)
9) **2** points

Following from Q 8 if a light of intensity $I_0 = 5 GW/cm^2$ incidents on a medium of length 1 m what will be the intensity at the output

(a) $1.78 \times 10^{11} W/m^2$ (b) $2.82 \times 10^{10} W/m^2$ (c) $1.78 \times 10^{12} W/m^2$

Previous Page

End