reviewer3@nptel.iitm.ac.in ▼

Courses » Modern Optics

Announcements

Course Ask a Question Progress

Mentor

FAQ

Unit 5 - Week 4

low to access the ortal		tting this assignment has p have not submitted this as		ue on 2018-09-05, 23:59 IS
Veek 1	1)			1 μ
	Read the following pa	ragraph and answer the	questions? (SINGLE CO	ORRECT OPTION) Q.1 - Q.4
leek 2			_	o horizontal parallel interfaces
leek 3				rface is at $z=d$. The core and
/eek 4	cladding layers have R waveguide.	I's $oldsymbol{n_1}$ and $oldsymbol{n_2}$ respectively	/. The EM wave is trave	elling from left to right along th
Lecture 18 : Waves	_			
in guided structures	The set of electric and	magnetic field compone	nts that constitute the	TM mode of this structure is
and modes	(A) H_y, E_z, E_x	(B) H_x, E_y, E_z	(C) H_z, E_x, E_y	(D) H_x, H_y, E_z
Lecture 19 : Waves in guided structures and modes (contd.)	O A.			122 22 2
Lecture 20 : Waves	○ в.			
in guided structures and modes (contd.)	O c.			
Lecture 21 : Waves	O D.			
in guided structures and modes (contd.)	No, the answer is inco	rrect.		
Lecture 22 : Waves	Score: 0 Accepted Answers:			
in guided structures and modes (contd.)	B.			
Lecture 23 : Waves	2)			1
in guided structures		ide, the RI varies as n^2 =	= n ² (z), i.e., indepen	dent of x – and y –coordinat
and modes (contd.)		ave equation for this stru		
Lecture Materials	(A) $\vec{E} = \vec{E}(x) e^{i(\omega t)}$	$-k_x x - k_y y$	(B) $\vec{E} = \vec{E}(x, y)$	$e^{i(\omega t - k_z z)}$
Quiz : Week 4 Assignment 4	(C) $\overrightarrow{E} = \overrightarrow{E}(y) e^{i(\omega t)}$		(D) $\vec{E} = \vec{E}(z) e$	
Feedback for Week	O A.			
	0 B			
ek 5				
ek 6	© C.			
ek 7	No, the answer is inco	rrect		
eek 8	Score: 0			
	Accepted Answers:			
eek 9	D.			

A project of

Powered by

Funded by Government of India Ministry of Human Resource Development Assignment Solution

About the electric and magnetic field components of guided modes of this waveguide which of the
following is true?
(A) Each of the field components H_x , H_z , E_x , E_z can be expressed in terms of H_y and E_y
(B) Each of the field components H_x , H_y , E_x , E_y can be expressed in terms of H_z and E_z
(C) All the field components H_x , H_y , H_z , E_x , E_y , and E_z cannot satisfy time-independent wave
equation (Helmholtz's equation)
(D) Both TE- and TM modes cannot co-exist/ propagate simultaneously in this waveguide
O A.
В.
O c.
O D.
No, the answer is incorrect.
Score: 0
Accepted Answers:
A.
4) 1 point
Which of the following statements about the modes of this waveguide is true?
(A) For a TE- mode to be guided in this structure the condition: $k_0^2 n_1^2 > k_y^2 > k_0^2 n_2^2$ must be satisfied
(B) A mode whether TE or TM will be guided in this waveguide only if $k_y^2 < k_0^2 n_2^2$
(C) If the field amplitude in the cladding is oscillatory, i.e., of the form $e^{\pm ik_z z}$, then it corresponds to a
guided mode
(D) the condition that the waveguide will carry more than one guided TE modes for a light of
wavelength λ_0 is $\lambda_0 \geq 2d \sqrt{n_1^2 - n_2^2}$
□ A.□ B.□ C.□ D.
No, the answer is incorrect.
Score: 0 Accepted Answers:
A.
5) 1 point
Read the following paragraph and answer the questions? (SINGLE CORRECT OPTION) Q.5 - Q.8
Given that the RI's of core and cladding of a symmetric planar dielectric waveguide are respectively
$n_1=1.50$ and $n_2=1.48$. The width of the core is d .
For a light of wavelength $\lambda_0 = 1.5 \mu m$, the waveguide supports only one mode (single-mode
operation). The width of the core is then
(A) $d \le 3.07 \mu m$ (B) $d \ge 4.13 \mu m$ (C) $d = 4.07 \mu m$ (D) $d \ge 6.13 \mu m$
А. В. С. D.
No, the answer is incorrect. Score: 0
Accepted Answers:
A.
6) 1 point

A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 7)	(A) a	$\leq 1.53 \mu m$	(B	$d \geq 2.06 \mu m$	l	(C) $d = 2.03 \mu r$	n	(D) $d \ge 3.06 \mu r$
No, the answer is incorrect. Score: 0 Accepted Answers: A. 7, 1 poin How many guided modes (total number of modes) will be supported in this waveguide when its corewidth is $d=12.3~\mu m$ and the operating wavelength is $\lambda_0=750~nm$? (A) B (B) 6 (C) 4 (D) 2 A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 3 μm . Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE}=6.45.74~\mu m^{-1}$ (B) $\beta_{TE}=64.574~\mu m^{-1}$ (C) $\beta_{TE}=645.74~\mu m^{-1}$ (D) $\beta_{TE}=645.74~\mu m^{-1}$ (E) $\beta_{TE}=645.74~\mu m^{-1}$	_			*)		•		
No, the answer is incorrect. Score: 0 D. No, the answer is incorrect. Score: 0 Accepted Answers: A 7) 1 poin 1 thow many guided modes (total number of modes) will be supported in this waveguide when its corewidth is $d=12.3~\mu m$ and the operating wavelength is $\lambda_0=750~nm$? (A) B (B) 6 (C) 4 (D) 2 A B C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A 3) One such waveguide having core-cladding RI's as $n_1=1.5$ and $n_2=1.0$ has $V=3.0$ at a wavelength $\lambda_0=1.3~\mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE}=6.4574~\mu m^{-1}$ (B) $\beta_{TE}=64.574~\mu m^{-1}$ (C) $\beta_{TE}=645.74~\mu m^{-1}$ (D) $\beta_{TE}=645.74~\mu m^{-1}$ No, the answer is incorrect. Score: 0 D. No, the answer is incorrect. Score: 0 1 poin Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components								
No, the answer is incorrect. Score: 0 Accepted Answers: A. 7) Accepted Answers: A. 7) How many guided modes (total number of modes) will be supported in this waveguide when its corewidth is $d=12.3~\mu m$ and the operating wavelength is $\lambda_0=750~nm$? (A) B (B) 6 (C) 4 (D) 2 A B. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 8) One such waveguide having core-cladding RI's as $n_1=1.5$ and $n_2=1.0$ has $V=3.0$ at a wavelength $\lambda_0=1.3~\mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $B_{TE}=6.4574~\mu m^{-1}$ (B) $B_{TE}=64.574~\mu m^{-1}$ (C) $B_{TE}=64.57.4~\mu m^{-1}$ (D) $B_{TE}=64.57.4~\mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. B. C. D. D. Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components		В.						
No, the answer is incorrect. Score: 0 Accepted Answers: A . 7)) c.						
Score: 0 Accepted Answers: A 7)		D.						
The point of the			et.					
How many guided modes (total number of modes) will be supported in this waveguide when its corewidth is $d=12.3~\mu m$ and the operating wavelength is $\lambda_0=750~nm$? (A) 8 (B) 6 (C) 4 (D) 2 A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. B) One such waveguide having core-cladding RI's as $n_1=1.5$ and $n_2=1.0$ has $V=3.0$ at a wavelength $\lambda_0=1.3~\mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE}=6.4574~\mu m^{-1}$ (B) $\beta_{TE}=64.574~\mu m^{-1}$ (C) $\beta_{TE}=645.74~\mu m^{-1}$ (D) $\beta_{TE}=6457.4~\mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A 9) C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, $Le, n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode are nearly equal (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse field components	Acce	epted Answers:						
How many guided modes (total number of modes) will be supported in this waveguide when its corewidth is $d=12.3~\mu m$ and the operating wavelength is $\lambda_0=750~nm$? (A) 8	Α.							
width is $d=12.3~\mu m$ and the operating wavelength is $\lambda_0=750~nm$? (A) 8 (B) 6 (C) 4 (D) 2 A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. B) 1 point one such waveguide having core-cladding Ri's as $n_1=1.5~$ and $n_2=1.0~$ has $V=3.0~$ at a wavelength $\lambda_0=1.3~\mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE}=6.4574~\mu m^{-1}$ (B) $\beta_{TE}=64.574~\mu m^{-1}$ (C) $\beta_{TE}=645.74~\mu m^{-1}$ (D) $\beta_{TE}=645.74~\mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) 1 point one of the following corresponding Ri's is small, $ke, n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components								1 point
(A) 8 (B) 6 (C) 4 (D) 2 A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. B) One such waveguide having core-cladding Ri's as $n_1 = 1.5$ and $n_2 = 1.0$ has $V = 3.0$ at a wavelength $\lambda_0 = 1.3 \mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE} = 6.4574 \mu m^{-1}$ (B) $\beta_{TE} = 64.574 \mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding Ri's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components							wavegui	de when its core-
A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 3) One such waveguide having core-cladding Rl's as $n_1 = 1.5$ and $n_2 = 1.0$ has $V = 3.0$ at a wavelength $\lambda_0 = 1.3 \ \mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE} = 6.4574 \ \mu m^{-1}$ (B) $\beta_{TE} = 64.574 \ \mu m^{-1}$ (C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ (D) $\beta_{TE} = 645.74 \ \mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding Rl's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode are nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components		7				79.00	(D)	
B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. Store: 0 Accepted Answers: A. Store: 0 One such waveguide having core-cladding Ri's as $n_1 = 1.5$ and $n_2 = 1.0$ has $V = 3.0$ at a wavelength $\lambda_0 = 1.3 \ \mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE} = 6.4574 \ \mu m^{-1}$ (B) $\beta_{TE} = 64.574 \ \mu m^{-1}$ A. B. C. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 99 Accepted Answers: A. 99 Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding Ri's is small, $k.e.$, $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components	(A) C	3	(D)	ь	(C)	4	(D)	2
B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. B. 1 poin One such waveguide having core-cladding Ri's as $n_1 = 1.5$ and $n_2 = 1.0$ has $V = 3.0$ at a wavelength $\lambda_0 = 1.3 \ \mu m$. Then which one of the following corresponds to propagation constant of the TE mode? A) $\beta_{TE} = 6.4574 \ \mu m^{-1}$ B) $\beta_{TE} = 64.574 \ \mu m^{-1}$ C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ A. B. C. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 99 Accepted Answers: A. 99 1 poin Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding Ri's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? A) Propagation constants of TE mode and corresponding TM mode are nearly equal B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components D) The modes are almost transverse (like free space propagation), i.e., transverse field components		1						
No, the answer is incorrect. Score: 0 Accepted Answers: A. 8) One such waveguide having core-cladding RI's as $n_1=1.5$ and $n_2=1.0$ has $V=3.0$ at a wavelength $\lambda_0=1.3~\mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE}=6.4574~\mu m^{-1}$ (B) $\beta_{TE}=64.574~\mu m^{-1}$ (C) $\beta_{TE}=645.74~\mu m^{-1}$ (D) $\beta_{TE}=645.4574~\mu m^{-1}$ A. 8. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1\approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components								
No, the answer is incorrect. Score: 0 Accepted Answers: A. 8) One such waveguide having core-cladding RI's as $n_1=1.5$ and $n_2=1.0$ has $V=3.0$ at a wavelength $\lambda_0=1.3~\mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE}=6.4574~\mu m^{-1}$ (B) $\beta_{TE}=64.574~\mu m^{-1}$ (C) $\beta_{TE}=645.74~\mu m^{-1}$ (D) $\beta_{TE}=645.474~\mu m^{-1}$ A. 8. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1\approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal B) A TE mode and the corresponding TM mode are very large compared to the transverse field components (I) The modes are almost transverse field components								
No, the answer is incorrect. Score: 0 Accepted Answers: A. 8) 1 point One such waveguide having core-cladding RI's as $n_1 = 1.5$ and $n_2 = 1.0$ has $V = 3.0$ at a wavelength $\lambda_0 = 1.3 \ \mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE} = 6.4574 \ \mu m^{-1}$ (B) $\beta_{TE} = 64.574 \ \mu m^{-1}$ (C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ (D) $\beta_{TE} = 6457.4 \ \mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) 1 point Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components		C.						
Score: 0 Accepted Answers: A . 8) 1 point One such waveguide having core-cladding RI's as $n_1 = 1.5$ and $n_2 = 1.0$ has $V = 3.0$ at a wavelength $\lambda_0 = 1.3 \ \mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE} = 6.4574 \ \mu m^{-1}$ (B) $\beta_{TE} = 64.574 \ \mu m^{-1}$ (C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ (D) $\beta_{TE} = 645.74 \ \mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A . 9) 1 point Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, $i.e., n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components		D.						
Score: 0 Accepted Answers: A. 8) 1 point One such waveguide having core-cladding RI's as $n_1 = 1.5$ and $n_2 = 1.0$ has $V = 3.0$ at a wavelength $\lambda_0 = 1.3 \ \mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE} = 6.4574 \ \mu m^{-1}$ (B) $\beta_{TE} = 64.574 \ \mu m^{-1}$ (C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ (D) $\beta_{TE} = 645.74 \ \mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) 1 point Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components	No. t	he answer is incorred						
Accepted Answers: A. 8)	-		il.					
A. 8) 1 point One such waveguide having core-cladding RI's as $n_1 = 1.5$ and $n_2 = 1.0$ has $V = 3.0$ at a wavelength $\lambda_0 = 1.3 \ \mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE} = 6.4574 \ \mu m^{-1}$ (B) $\beta_{TE} = 64.574 \ \mu m^{-1}$ (C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ (D) $\beta_{TE} = 645.74 \ \mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) 1 point Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components								
One such waveguide having core-cladding RI's as $n_1=1.5$ and $n_2=1.0$ has $V=3.0$ at a wavelength $\lambda_0=1.3~\mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE}=6.4574~\mu m^{-1}$ (B) $\beta_{TE}=64.574~\mu m^{-1}$ (C) $\beta_{TE}=645.74~\mu m^{-1}$ (D) $\beta_{TE}=645.74~\mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) 1 point Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1\approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components		pieu Alisweis.						
One such waveguide having core-cladding RI's as $n_1=1.5$ and $n_2=1.0$ has $V=3.0$ at a wavelength $\lambda_0=1.3~\mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE}=6.4574~\mu m^{-1}$ (B) $\beta_{TE}=64.574~\mu m^{-1}$ (C) $\beta_{TE}=645.74~\mu m^{-1}$ (D) $\beta_{TE}=645.4~\mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) 1 point Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1\approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components								4 maint
wavelength $\lambda_0 = 1.3 \ \mu m$. Then which one of the following corresponds to propagation constant of the TE mode? (A) $\beta_{TE} = 6.4574 \ \mu m^{-1}$ (B) $\beta_{TE} = 64.574 \ \mu m^{-1}$ (C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ (D) $\beta_{TE} = 645.74 \ \mu m^{-1}$		uch waveguide havi	na co	ro-cladding Pl's as t	. =	1 5 and n = 1 0	has V =	to the contract of the contrac
the TE mode? (A) $\beta_{TE} = 6.4574 \ \mu m^{-1}$ (B) $\beta_{TE} = 64.574 \ \mu m^{-1}$ (C) $\beta_{TE} = 645.74 \ \mu m^{-1}$ (D) $\beta_{TE} = 645.4574 \ \mu m^{-1}$ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) 1 point Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components								
(A) β _{TE} = 6.4574 μm ⁻¹ (C) β _{TE} = 645.74 μm ⁻¹ (D) β _{TE} = 6457.4 μm ⁻¹ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) 1 poin Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding Rl's is small, i.e., n ₁ ≈ n ₂ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components				en winen ene er an			- pp-6	acion constant of
(C) β _{TE} = 645.74 μm ⁻¹ (D) β _{TE} = 6457.4 μm ⁻¹ A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) 1 point Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., n ₁ ≈ n ₂ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components		moder						
A. B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components	(A)		-1					
B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components		$\boldsymbol{\beta}_{TE} = 6.4574 \ \mu m$			(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
B. C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components		$\boldsymbol{\beta}_{TE} = 6.4574 \ \mu m$			(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
C. D. No, the answer is incorrect. Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding Rl's is small, i.e., n₁ ≈ n₂ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components		$m{eta}_{TE} = 6.4574 \ \mu m$ $m{eta}_{TE} = 645.74 \ \mu m$			(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components		$\beta_{TE} = 6.4574 \ \mu m$ $\beta_{TE} = 645.74 \ \mu m$ A.			(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components		$\beta_{TE} = 6.4574 \ \mu m$ $\beta_{TE} = 645.74 \ \mu m$ A.			(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
Score: 0 Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components		$\beta_{TE} = 6.4574 \ \mu m$ $\beta_{TE} = 645.74 \ \mu m$ A.			(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
Accepted Answers: A. 9) Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components		$\beta_{TE} = 6.4574 \ \mu m$ $\beta_{TE} = 645.74 \ \mu m$ A.			(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
9) 1 poin Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components	(c) I	$\beta_{TE} = 6.4574 \ \mu m$ $\beta_{TE} = 645.74 \ \mu m$ A. B. C. D.	-1		(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
Point Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., n₁ ≈ n₂ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components	(C)	$eta_{TE} = 6.4574 \ \mu m$ $eta_{TE} = 645.74 \ \mu m$ A. B. C. D.	-1		(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components	(C) /	$eta_{TE} = 6.4574 \ \mu m$ $eta_{TE} = 645.74 \ \mu m$ A. B. C. D. the answer is incorrected:	-1		(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
Choose the correct answer/s. (MULTIPLE CORRECT OPTION) Q.9-Q.12 For practical waveguides, the difference in the core-cladding RI's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components	No, t	$eta_{TE} = 6.4574 \ \mu m$ $eta_{TE} = 645.74 \ \mu m$ A. B. C. D. the answer is incorrected:	-1		(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	
For practical waveguides, the difference in the core-cladding Rl's is small, i.e., $n_1 \approx n_2$ (weakly guiding structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components	No, t Scor Acce	$eta_{TE} = 6.4574 \ \mu m$ $eta_{TE} = 645.74 \ \mu m$ A. B. C. D. the answer is incorrected:	-1		(B)	$\beta_{TE} = 64.574 \mu n$	n^{-1}	1 point
structure). For such waveguides that supports only one TE- and one TM modes, which of the following facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), <i>i.e.</i> , transverse field components	No, t Scor Acce A.	$eta_{TE} = 6.4574 \ \mu m$ $eta_{TE} = 645.74 \ \mu m$ A. B. C. D. the answer is incorrected epoted Answers:	et.	(MULTIPLE CORREC	(B) (D)	$\beta_{TE} = 64.574 \mu m$ $\beta_{TE} = 6457.4 \mu m$	n^{-1}	1 point
facts is/are true? (A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), <i>i.e.</i> , transverse field components	No, t Scor Acce A.	$eta_{TE} = 6.4574 \ \mu m$ $eta_{TE} = 645.74 \ \mu m$ A. B. C. D. the answer is incorrected epted Answers:	et.	VS.	(B)	$eta_{TE} = 64.574 \ \mu m$ $eta_{TE} = 6457.4 \ \mu m$ TION) Q.9-Q.12	n ⁻¹	
(A) Propagation constants of TE mode and corresponding TM mode are nearly equal (B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), <i>i.e.</i> , transverse field components	No, t Scor Acce A. 9) Choose	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. the answer is incorrected answers: See the correct answer actical waveguides,	er/s.	ifference in the cor	(B) (D)	$ \beta_{TE} = 64.574 \mu m $ $ \beta_{TE} = 6457.4 \mu m $ PTION) Q.9-Q.12 dding RI's is small, i.e.	n ⁻¹ n ⁻¹ 2., n₁ ≈	n_2 (weakly guiding
(B) A TE mode and the corresponding TM mode exhibit very nearly similar field pattern (C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), <i>i.e.</i> , transverse field components	No, t Scor Acce A. 9) Choos	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. the answer is incorrecte: 0 epted Answers: the the correct answer actical waveguides, ure). For such waveguides, ure).	er/s.	ifference in the cor	(B) (D)	$ \beta_{TE} = 64.574 \mu m $ $ \beta_{TE} = 6457.4 \mu m $ PTION) Q.9-Q.12 dding RI's is small, i.e.	n ⁻¹ n ⁻¹ 2., n₁ ≈	n_2 (weakly guiding
(C) The longitudinal field components for both TE- and corresponding TM mode are very large compared to the transverse field components (D) The modes are almost transverse (like free space propagation), <i>i.e.</i> , transverse field components	No, t Scor Acce A. 9) Choos For prostructifacts is	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. the answer is incorrecte: 0 epted Answers: the the correct answer actical waveguides, ure). For such wavegs/are true?	er/s. the d	ifference in the cor s that supports only	(B) (D)	$eta_{TE}=64.574~\mu m$ $eta_{TE}=6457.4~\mu m$ PTION) Q.9-Q.12 dding RI's is small, i.e. TE- and one TM more	n^{-1}	n_2 (weakly guiding th of the following
compared to the transverse field components (D) The modes are almost transverse (like free space propagation), i.e., transverse field components	No, t Scor Acce A. 9) Choos For prostructifacts is (A) Pr	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. the answer is incorrected answers: see the correct answer actical waveguides, ure). For such wavegovers/are true?	er/s. the d	ifference in the cor s that supports only E mode and corresp	(B) (D)	$eta_{TE}=64.574~\mu m$ $eta_{TE}=6457.4~\mu m$ PTION) Q.9-Q.12 dding RI's is small, i.e. TE- and one TM more	n^{-1}	n_2 (weakly guiding ch of the following
(D) The modes are almost transverse (like free space propagation), i.e., transverse field components	No, t Scor Acce A. 9) Choos For prestructe facts is (A) Pr	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. he answer is incorrecte: 0 epted Answers: see the correct answer actical waveguides, ure). For such wave sylare true? TE mode and the correct and the correc	er/s. the d guide s of T	ifference in the cor s that supports only E mode and corresp onding TM mode e	(B) (D)	$eta_{TE}=64.574~\mu m$ $eta_{TE}=6457.4~\mu m$ $eta_{TE}=6457.4~\mu m$ TION) Q.9-Q.12 Edding RI's is small, i.e. TE- and one TM more mg TM mode are nearly similar for	n^{-1}	n_2 (weakly guiding th of the following $oxed{l}$
	No, t Scor Acce A. 9) Choos For pristructifacts is (A) Pr (B) A	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. the answer is incorrecte: 0 epted Answers: the the correct answer actical waveguides, ure). For such waveguides, are true? topagation constant TE mode and the correcte longitudinal field	the diguide:	ifference in the cor s that supports only E mode and corresp onding TM mode ex onents for both TE-	(B) (D)	$eta_{TE}=64.574~\mu m$ $eta_{TE}=6457.4~\mu m$ $eta_{TE}=6457.4~\mu m$ TION) Q.9-Q.12 Edding RI's is small, i.e. TE- and one TM more mg TM mode are nearly similar for	n^{-1} n^{-1} n^{-1} $pprox 2$ $n_1 pprox 2$ des, which arly equalifield patting n	n_2 (weakly guiding th of the following $oxed{l}$
are nearry continuous across the interface	No, t Scor Acce A. 9) Choos For prostructifacts is (A) Pr (B) A (C) Th	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. the answer is incorrecte: 0 epted Answers: Te the correct answer actical waveguides, ure). For such waveguides, are true? Topagation constant TE mode and the correct and th	er/s. the d guide s of Ti rresp comp	ifference in the cor s that supports only E mode and corresp onding TM mode e onents for both TE- Id components	(B) (D) (CT OP e-clae / one coondi khibit	$eta_{TE}=64.574~\mu m$ $eta_{TE}=6457.4~\mu m$ $eta_{TE}=6457.4~\mu m$ TION) Q.9-Q.12 Idding RI's is small, i.e. TE- and one TM mode are nearly similar from the corresponding TM mode are nearly s	n^{-1}	n ₂ (weakly guiding the of the following learn very large
	No, t Scor Acce A. 9) Choose For prostructifacts is (A) Prostruction (B) A (C) The companion (D) The	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. the answer is incorrecte: 0 epted Answers: the the correct answer actical waveguides, ure). For such wave s/are true? TE mode and the content of the transverse modes are almost are modes are almost almost are modes are modes are almost almost almost are modes are modes are almost	the diguides	ifference in the cor s that supports only E mode and corresp onding TM mode econents for both TE- ld components sverse (like free spa	(B) (D) (CT OP e-clae / one coondi khibit	$eta_{TE}=64.574~\mu m$ $eta_{TE}=6457.4~\mu m$ $eta_{TE}=6457.4~\mu m$ TION) Q.9-Q.12 Idding RI's is small, i.e. TE- and one TM mode are nearly similar from the corresponding TM mode are nearly s	n^{-1}	n ₂ (weakly guiding the of the following learn
	No, t Scor Acce A. 9) Choose For prostructifacts is (A) Prostruction (B) A (C) The companion (D) The	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. the answer is incorrecte: 0 epted Answers: the the correct answer actical waveguides, ure). For such wave s/are true? TE mode and the content of the transverse modes are almost are modes are almost almost are modes are modes are almost almost almost are modes are modes are almost	the diguides	ifference in the cor s that supports only E mode and corresp onding TM mode econents for both TE- ld components sverse (like free spa	(B) (D) (CT OP e-clae / one coondi khibit	$eta_{TE}=64.574~\mu m$ $eta_{TE}=6457.4~\mu m$ $eta_{TE}=6457.4~\mu m$ TION) Q.9-Q.12 Idding RI's is small, i.e. TE- and one TM mode are nearly similar from the corresponding TM mode are nearly s	n^{-1}	n ₂ (weakly guiding the of the following learn very large
	No, t Scor Acce A. 9) Choos For prostructifacts is (A) Pr (B) A (C) Th compa	β _{TE} = 6.4574 μm β _{TE} = 645.74 μm A. B. C. D. the answer is incorrecte: 0 epted Answers: the the correct answer actical waveguides, ure). For such wave s/are true? TE mode and the content of the transverse modes are almost are modes are almost almost are modes are modes are almost almost almost are modes are modes are almost	the diguides	ifference in the cor s that supports only E mode and corresp onding TM mode econents for both TE- ld components sverse (like free spa	(B) (D) (CT OP e-clae / one coondi khibit	$eta_{TE}=64.574~\mu m$ $eta_{TE}=6457.4~\mu m$ $eta_{TE}=6457.4~\mu m$ TION) Q.9-Q.12 Idding RI's is small, i.e. TE- and one TM mode are nearly similar from the corresponding TM mode are nearly s	n^{-1}	n ₂ (weakly guiding the of the following learn very large

□ c.			
No, the answer is inco	rrect.		
Score: 0			
Accepted Answers:			
В.			
D.			
10)			1 point
	E mode (0 th order TE) of a	symmetric planar slab wave	
	ity/quantities will lie betw		
(A) $\kappa \frac{d}{2}$	(B) $\gamma \frac{d}{2}$	(C) $V = k_0 \frac{d}{2} \sqrt{n_1^2 - n_2^2}$	(D) $\kappa \frac{d}{2} \tan \kappa \frac{d}{2}$
А. В. С.			
No, the answer is inco	rrect.		
Accepted Answers:			
A.			
В.			
C. D.			
			4
11)	clah wayoguida, the trans	verse field amplitude of a gu	1 point
		verse field amplitude of a gu positions. Then this mode m	
(A) a symmetric TE m		(B) an antisymmetric TE	16.10 day - 26
(C) a symmetric TM r		(D) an antisymmetric TN	
(c) a symmetric min	node	(D) an and symmetric 114	Mode
■ A.			
□ _B .			
C.			
D.			
No, the answer is inco	rrect.		
Score: 0			
Accepted Answers:			
В.			
D.			
12)			1 point
		lab waveguide, the field patt	ern of the lowest order
(fundamental) mode i		/n\	
(A) a Hermite-Gaussi		(B) a purely Gaussian fur	nction
(C) a Bessel's functio	ns	(D) Airy functions	
O A.			
О в.			
C.			
O D.			
No, the answer is inco	rrect.		
Accepted Answers:			
B.			

Previous Page

End