urses » Modern Optics		Announcements	Course	Ask a Question	Progress	Mentor	FAQ
nit 3 - Week	2						
Course outline	Assignmer	nt 2					
How to access the portal	The due date for submitting this assignment has passed.Due on 2018-08-15, 23:59 IST.As per our records you have not submitted this assignment.						
Week 1	1)						1 poin
Week 2	For a plane wave	in an anisotropic n	on-magnet	ic medium, whicl	h of the foll	owing rela	ations ab
Lecture 8 : Wave propagation in anisotropic media	$\vec{E}, \vec{H}, \vec{D}$ and \vec{k} is/a	are true?					
 Lecture 9 : Wave propagation in anisotropic media (Contd.) 	$\overrightarrow{H} = -\frac{1}{\omega}$ (A)	$\frac{1}{\mu_0}(\vec{k} imes \vec{E})$					
 Lecture 10 : Wave propagation in anisotropic media (Contd.) 	$\overrightarrow{D} = \frac{\mu_{1}}{\omega}$ (B)	$\frac{P}{2}(\vec{k}\times\vec{H})$					
 Lecture 11 : Wave propagation in anisotropic media (Contd.) 	$\overrightarrow{E} = \frac{1}{\omega^2}$	$\frac{1}{\mu_0\varepsilon} \left(\vec{k} \times \vec{k} \times \vec{H} \right)$					
Lecture 12 : Wave propagation in anisotropic media (Contd.)	$\overrightarrow{D} = -$ (D) No, the answer is inc	$\frac{1}{\omega}(\vec{k}\times\vec{H})$					
Lecture Materials	Score: 0						
Quiz : Assignment 2	→ 1 →	→.					
Feedback for Week 2	$\dot{H} = \frac{1}{\omega\mu_0} \left(\dot{k} \right)$	$\times E)$					
Week 3	(A) 2)						1
Week 4	د In a dielectric me	dium, the \vec{E} field of	a plane el	ectromagnetic w	ave makes a	an angle c	of 120⁰
Week 5	direction of propa	agation given by \vec{k} .	The angle	between the dire	ction of en	ergy flow	and that
Neek 6	propagation is the	en	-				
Neek /							
Week 8	(A) 6U°						
Week 9	(B) 30 ⁰						
Neek 10							

(A) For a negative uniaxial crystal, extraordinary RI is greater than the ordinary RI, i.e., $n_e > n_o$

- (B) For a positive uniaxial crystal, optic axis corresponds to the fast axis
- C) For a negative uniaxial crystal, along optic axis velocity of e-wave is greater than that of o-wave
- (D) For a positive uniaxial crystal, wave polarised perpendicular to optic axis corresponds to o-wave

No, the answer is incorrect.

Score: 0

Accepted Answers:

(B) For a positive uniaxial crystal, optic axis corresponds to the fast axis

(D) For a positive uniaxial crystal, wave polarised perpendicular to optic axis corresponds to o-wave

4) A linearly polarized beam is incident on a half wave-plate making an angle of $\pi/4$ with the fast axis. Then the emergent beam from the half wave-plate is

- (A) elliptically polarised
- (B) circularly polarised
- (C) linearly polarised
- (D) unpolarised

No, the answer is incorrect.

Score: 0

Accepted Answers:

(C) linearly polarised

5) About the index ellipsoid of an anisotropic medium, which of the following is/are true?

1 point

(A) Half lengths of the ellipsoid axes represent the RI's in three mutually orthogonal directions (x,y,z)

(B) For a given direction of propagation, the ellipsoid yields two directions of polarisation of the wave

(C) For a given direction of propagation, the ellipsoid yields two RIs that correspond to the two orthogonal polarisations of the wave

(D) For a given direction of propagation, the ellipsoid yields two \vec{D} 's that corresponding to two possible polarization of the wave

No, the answer is incorrect.

Score: 0

Accepted Answers:

(A) Half lengths of the ellipsoid axes represent the RI's in three mutually orthogonal directions (x, y, z)(B) For a given direction of propagation, the ellipsoid yields two directions of polarisation of the wave (C) For a given direction of propagation, the ellipsoid yields two RIs that correspond to the two orthogonal polarisations of the wave

(D) For a given direction of propagation, the ellipsoid yields two \vec{D} 's that corresponding to two possible polarization of the wave

6)

1 point

For an electromagnetic wave propagating along xz –plane making an angle of 30^0 with z –axis medium is uniaxial having $n_x = 1.5442$, $n_y = 1.5442$ and $n_z = 1.5533$. The two RI's seen k wave for polarization parallel and polarization perpendicular to xz – plane are respectively

 $\begin{array}{lll} n_1 = 1.5442 \ and \ n_2 \approx 1.5465 \\ n_1 = 1.5416 \ and \ n_2 \approx 1.5513 \\ \hline & (B) \\ \hline & (C) \\ n_1 = 1.5465 \ and \ n_2 \approx 1.5533 \\ \hline & (D) \\ n_1 = 1.5533 \ and \ n_2 \approx 1.5443 \\ \hline & (D) \hline \hline \hline & (D) \hline \hline \hline & (D) \hline \hline & (D) \hline \hline \hline \hline \hline \\$

7)

1 point

The equation of an index ellipsoid is given by $Ax^2 + By^2 + Cz^2 + Dyz = 1$. It has across-term i Thus, to transform the ellipsoid to principal axes system, a rotation of the coordinate axes about required. What is the angle of rotation?

(A)
$$\pi/4$$

(B) $\frac{\pi}{4} + \frac{1}{2}\cot^{-1}\frac{B+C}{D}$
(C) $\frac{\pi}{4} - \frac{1}{2}\cot^{-1}\frac{D}{B+C}$
(C) $\frac{1}{2}\tan^{-1}\frac{D}{B-C}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
(D) $\frac{1}{2}\tan^{-1}\frac{D}{B-C}$
(B) 1 point

The equation of an index ellipsoid for a medium at some wavelength is given by:

$$\frac{x^2}{2.28} + \frac{y^2}{2.25} + \frac{z^2}{2.19} + 0.0211yz = 1.$$

To transform to principal axes system, the ellipsoid axes requires a rotation about x. The angle ϕ rotation in this case is approximately (in radian)

(A) 0.5237 (B) 0.7853 (C) 1.0471 (D) 0.3925 No, the answer is incorrect.

Score: 0 Accepted Answers:

(A) 0.5237

9)

8)

1 point

The permittivity tensor of the above medium (question no.8) is given by:

$$\begin{pmatrix} 2.28 & 0 & 0 \\ 0 & 2.25 & -0.05196 \\ 0 & -0.05196 & 2.19 \end{pmatrix}$$

Then he principal RI's of the medium are (you may use rotation of coordinate axes or matrix diagonalisation)

$$\begin{array}{c} n_x = \sqrt{2.28}, n_y = \sqrt{2.28}, n_z = \sqrt{2.16} \\ n_x = \sqrt{2.01}, n_y = \sqrt{2.81}, n_z = \sqrt{1.19} \\ (B) \\ (B) \\ (C) \\ n_x = \sqrt{2.11}, n_y = \sqrt{2.01}, n_z = \sqrt{2.19} \\ (C) \\ n_x = \sqrt{2.08}, n_y = \sqrt{2.19}, n_z = \sqrt{1.61} \\ (D) \\ No, the answer is incorrect. \\ Score: 0 \\ Accepted Answers: \\ n_x = \sqrt{2.28}, n_y = \sqrt{2.28}, n_z = \sqrt{2.16} \end{array}$$

10)In a uniaxial crystal, one sees double refraction or two images of a point object. This happens due to splitting of an **1** point incident wave into an ordinary wave and an extraordinary wave, i.e., o-wave and e-wave. In this context, what is true about the o-wave and e-wave?

(A) both follow Snell's law	
(B) only o-ray follows Snell's law	
(C) e-ray in positive crystal follows Snell's law	
(D) e-ray in negative crystal follows Snell's law	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
(B) only o-ray follows Snell's law	
11) 11 point	
thickness for which the e -wave and e -wave combine to form a plane polarized light. Given	
$n = 1.5442$ and $n = 1.5533$ for $\lambda = 0.5 \times 10^{-6}$ mater	
$n_0 = 1.3442$ and $n_e = 1.3333$ for $\lambda = 0.3 \times 10^{-1}$ meter.	
0	
(A) 2.7 μm	
(B) 27.5 μm	
(C) 7.52 μm	
Ο (0) <i>γ</i> 5.2 μm	
Score: 0	
Accepted Answers:	
(B) 27.5 μm	
12) 1 point	
A plane electromagnetic wave is propagating in the xz –plane in a uniaxial crystal with $n_x = n$	l _y
n_z . the direction of propagation of the wave, k makes an angle of $\pi/4$ with the x-axis and is	
polarized along y. Then which of the following is/are true about the directions of \vec{E} , \vec{H} , \vec{D} , \vec{k} , \vec{S} ?	?
\square (A) \vec{k} is inclined at 45^{0} with the direction of \vec{S}	
\overrightarrow{D} and \overrightarrow{E} are parallel to each other \square (B)	
\overrightarrow{D} makes an angle of 45^0 with the direction of \overrightarrow{E}	
$ec{k}$ and $ec{H}$ are at right angles to each other $lacksquare$ (D)	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
$_{(A)}$ \vec{k} is inclined at 45^{0} with the direction of \vec{S}	
\overrightarrow{D} makes an angle of $\mathbf{45^0}$ with the direction of \overrightarrow{E}	
$ec{k}$ and $ec{H}$ are at right angles to each other	

Previous Page

End