Unit 3 - Week 2

(A) For a negative uniaxial crystal, extraordinary RI is greater than the ordinary RI, i.e., $\boldsymbol{n}_{\boldsymbol{e}}>\boldsymbol{n}_{\boldsymbol{o}}$(B) For a positive uniaxial crystal, optic axis corresponds to the fast axis(C) For a negative uniaxial crystal, along optic axis velocity of e-wave is greater than that of o-wave(D) For a positive uniaxial crystal, wave polarised perpendicular to optic axis corresponds to o-wave

No, the answer is incorrect.
Score: 0
Accepted Answers:
(B) For a positive uniaxial crystal, optic axis corresponds to the fast axis
(D) For a positive uniaxial crystal, wave polarised perpendicular to optic axis corresponds to o-wave
4) A linearly polarized beam is incident on a half wave-plate making an angle of $\boldsymbol{\pi} / \mathbf{4}$ with the fast axis. Then the 1 point emergent beam from the half wave-plate is(A) elliptically polarised(B) circularly polarised(C) linearly polarised
(D) unpolarised

No, the answer is incorrect.
Score: 0
Accepted Answers:
(C) linearly polarised
5) About the index ellipsoid of an anisotropic medium, which of the following is/are true?(A) Half lengths of the ellipsoid axes represent the RI's in three mutually orthogonal directions ($\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$)(B) For a given direction of propagation, the ellipsoid yields two directions of polarisation of the wave(C) For a given direction of propagation, the ellipsoid yields two RIs that correspond to the two orthogonal polarisations of the wave
(D) For a given direction of propagation, the ellipsoid yields two \vec{D} 's that corresponding to two possible polarization of the wave

No, the answer is incorrect.
Score: 0
Accepted Answers:
(A) Half lengths of the ellipsoid axes represent the Rl's in three mutually orthogonal directions ($\boldsymbol{x}, \mathbf{y}, \boldsymbol{z}$)
(B) For a given direction of propagation, the ellipsoid yields two directions of polarisation of the wave
(C) For a given direction of propagation, the ellipsoid yields two RIs that correspond to the two orthogonal polarisations of the wave
(D) For a given direction of propagation, the ellipsoid yields two \vec{D} 's that corresponding to two possible polarization of the wave
6)

1 point
For an electromagnetic wave propagating along $\boldsymbol{X Z}$-plane making an angle of 30^{0} with \boldsymbol{Z}-axis medium is uniaxial having $\boldsymbol{n}_{\boldsymbol{x}}=\mathbf{1 . 5 4 4 2 ,} \boldsymbol{n}_{\boldsymbol{y}}=\mathbf{1 . 5 4 4 2}$ and $\boldsymbol{n}_{\boldsymbol{z}}=\mathbf{1 . 5 5 3 3}$. The two RI's seen : wave for polarization parallel and polarization perpendicular to $\boldsymbol{X Z}$ - plane are respectively$n_{1}=1.5442$ and $n_{2} \approx 1.5465$
(A)
$n_{1}=1.5416$ and $n_{2} \approx 1.5513$(B)$n_{1}=1.5465$ and $n_{2} \approx 1.5533$(D) $n_{1}=1.5533$ and $n_{2} \approx 1.5443$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
n_{1}=\mathbf{1} .5442 \text { and } n_{2} \approx \mathbf{1} .5465
$$

(A)

The equation of an index ellipsoid is given by $\boldsymbol{A} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{B} \boldsymbol{y}^{\mathbf{2}}+\boldsymbol{C} \boldsymbol{z}^{\mathbf{2}}+\boldsymbol{D} \boldsymbol{y z}=\mathbf{1}$. It has across-term i Thus, to transform the ellipsoid to principal axes system, a rotation of the coordinate axes about required. What is the angle of rotation?
(A) $\boldsymbol{\pi} / \mathbf{4}$$\frac{\pi}{4}+\frac{1}{2} \cot ^{-1} \frac{B+C}{D}$
(B)

$$
\frac{\pi}{4}-\frac{1}{2} \cot ^{-1} \frac{D}{B+C}
$$

(C)(D) $\frac{1}{2} \tan ^{-1} \frac{D}{B-C}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(D)
$\frac{1}{2} \tan ^{-1} \frac{D}{B-C}$
8)

The equation of an index ellipsoid for a medium at some wavelength is given by:
$\frac{x^{2}}{2.28}+\frac{y^{2}}{2.25}+\frac{z^{2}}{2.19}+\mathbf{0 . 0 2 1 1 y z}=1$.
To transform to principal axes system, the ellipsoid axes requires a rotation about \boldsymbol{x}. The angle, rotation in this case is approximately (in radian)(A) 0.5237(B) 0.7853
(C) 1.0471(D) 0.3925

No, the answer is incorrect.
Score: 0
Accepted Answers:
(A) 0.5237
9)

1 point
The permittivity tensor of the above medium (question no.8) is given by:

$$
\left(\begin{array}{ccc}
2.28 & 0 & 0 \\
0 & 2.25 & -0.05196 \\
0 & -0.05196 & 2.19
\end{array}\right)
$$

Then he principal RI's of the medium are (you may use rotation of coordinate axes or matrix diagonalisation)

$$
n_{x}=\sqrt{2.28}, n_{y}=\sqrt{2.28}, n_{z}=\sqrt{2.16}
$$

$$
n_{x}=\sqrt{2.01}, n_{y}=\sqrt{2.81}, n_{z}=\sqrt{1.19}
$$

(B)

$$
n_{x}=\sqrt{2.11}, n_{y}=\sqrt{2.01}, n_{z}=\sqrt{2.19}
$$

(C)
No, the answer is incorrect.
Score: 0
Accepted Answers:
(A)

$$
n_{x}=\sqrt{2.28}, n_{y}=\sqrt{2.28}, n_{z}=\sqrt{2.16}
$$

10)In a uniaxial crystal, one sees double refraction or two images of a point object. This happens due to splitting of an 1 point incident wave into an ordinary wave and an extraordinary wave, i.e., o-wave and e-wave. In this context, what is true about the o-wave and e-wave?(A) both follow Snell's law(B) only o-ray follows Snell's law(C) e-ray in positive crystal follows Snell's law(D) e-ray in negative crystal follows Snell's law

No, the answer is incorrect.
Score: 0
Accepted Answers:
(B) only o-ray follows Snell's law
11)

1 point
Plane polarized light is incident on a piece of quartz crystal cut parallel to its axis. Find out t l thickness for which the o-wave and e-wave combine to form a plane polarized light. Given
$\boldsymbol{n}_{\boldsymbol{o}}=1.5442$ and $\boldsymbol{n}_{\boldsymbol{e}}=1.5533$ for $\lambda=0.5 \times 10^{-6}$ meter.
(A) $2.7 \mu \mathrm{~m}$(B) $27.5 \mu \mathrm{~m}$(C) $7.52 \mu \mathrm{~m}$
(D) $75.2 \mu \mathrm{~m}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(B) $27.5 \mu \mathrm{~m}$
12)

A plane electromagnetic wave is propagating in the $\boldsymbol{x} \boldsymbol{z}$ - plane in a uniaxial crystal with $\boldsymbol{n}_{\boldsymbol{x}}=\boldsymbol{n}_{\boldsymbol{y}}$ $\boldsymbol{n}_{\boldsymbol{z}}$. the direction of propagation of the wave, $\widehat{\boldsymbol{k}}$ makes an angle of $\boldsymbol{\pi} / \boldsymbol{4}$ with the \boldsymbol{x}-axis and is polarized along \boldsymbol{y}. Then which of the following is/are true about the directions of $\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{H}}, \overrightarrow{\boldsymbol{D}}, \overrightarrow{\boldsymbol{k}}, \overrightarrow{\boldsymbol{S}}$?$\overrightarrow{\boldsymbol{k}}$ is inclined at $\mathbf{4 5}^{\mathbf{0}}$ with the direction of $\overrightarrow{\boldsymbol{S}}$
\vec{D} and $\overrightarrow{\boldsymbol{E}}$ are parallel to each other(B)(C)
$\overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{H}}$ are at right angles to each other(D)

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\overrightarrow{\boldsymbol{k}}$ is inclined at 45^{0} with the direction of $\overrightarrow{\boldsymbol{S}}$
(A)
$\overrightarrow{\boldsymbol{D}}$ makes an angle of $\mathbf{4 5 ^ { \circ }}$ with the direction of $\overrightarrow{\boldsymbol{E}}$
(C)
$\overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{H}}$ are at right angles to each other
(D)

Previous Page

End

