X

PPTEL

reviewer3@nptel.iitm.ac.in ▼

Courses » Modern Optics

Announcements Course Ask a Question Progress Mentor FAQ

Unit 13 - Week 12

Course outline	Week 12 Ass	signment 12	
How to access the portal		ting this assignment has passed. have not submitted this assignment.	Due on 2018-10-24, 23:59 IST.
Week 1	1)		1 point
Week 2		pased on the following paragrap	
Week 3	the relative permittiv	vity and hence the impermeabili	e optical properties of the medium in ter ty tensor. It may also modify the polarisa
Week 4		l acoustic wave travelling along	z -direction in an isotropic medium. In th
Week 5	(A) the impermeabili only	ity change tensor of the mediun	n contains two nonzero off-diagonal elen
Week 6			ntains three nonzero diagonal elements ed along the y- direction results diffracted
Week 7	that will be y -polariz	red	
Week 8	(D) an incident light p that will be y -polariz		ed along the <i>x-</i> direction results diffracted
Week 9			
Week 10	(A)		
Week 11	(c)		
Week 12	(D)		
Acousto-optic Modulators and Devices lecture 55:	No, the answer is income Score: 0 Accepted Answers: (B) (C)	rect.	
Acousto-optic Modulators and Devices (Contd.)	2) Consider a y- polarise	ed acoustic shear wave travellin	1 poin g along z- direction in an isotropic mediu
Lecture 56 : Acousto-optic Modulators and Devices (Contd.)	only		n contains two nonzero off-diagonal eler
Lecture 57 : Acousto-optic Modulators and Devices (Contd.)	(C) an incident light ${\mathfrak p}$ that will be ${\mathfrak p}$ -polariz	propagating along $oldsymbol{x}$ and polarized	entains two nonzero diagonal elements of ed along the z -direction results diffracted along the x -direction results diffracted
lecture 58 : Magneto-optic Effect	that will be z - polariz		ed along the y -direction results diffracted
lecture 59 : Magneto-optic Effect (Contd.)	(A) (B)		
Lastura Materiala		Privacy & Terms - Honor Code - FAQs -	
	© 2017 IN IEE I	auj a loinio Honor Oude TAQ3	G+

Powered by

(D)	
(C) (D)	

For a shear acoustic wave which is y-polarised travelling along x direction in an **isotropic** mediu (A) the diagonal elements of **impermeability** do not change due to this transverse acoustic way

- (B) the off-diagonal elements of impermeability do not change due to this transverse acoustic v
- (C) due to this shear acoustic wave the index ellipsoid of the medium does not undergo any rot
- (D) the RI along $oldsymbol{z}$ i.e., $oldsymbol{n_z}$ is modulated by this transverse acoustic wave in the medium

1 point

Consider an anisotropic medium (LiNbO₃) in which an x- polarised acoustic shear wave travellin along y- direction.

- (A) In this case there are only **two** nonzero off-diagonal elements that correspond to x, y cross components in the resulting **strain** tensor
- (B) In general for acoustic shear wave, the strain tensor assumes two nonzero off-diagonal elen only that correspond to the directions of propagation and direction of polarisation of the acous wave
- (C) In this case effectively the **permittivity change** tensor of the medium contains only **four** non off-diagonal elements that correspond to x, y and x, z cross components
- (D) an incident light propagating along y and polarized along the z-direction results diffracted w will remain y- polarized

(A)		
(B)		
(c)		
(D)		
No, the answer is incorrect.		
Score: 0		
Accepted Answers:		
(A)		
(B)		
(C)		
5)		

5) Questions 5 - 10 are based on the acousto-optic modulators.

1 point

Which of the following is/are required for an acoustic Bragg transducer having a large value of f of merit?

- (A) High refractive index
- (B) High density
- (C) High acoustic velocity
- (D) Low photo-elastic constant

6) The number of resolvable spot in an acoustic-optic transducer is/are (A) proportional to the wavelength of the acoustic-wave	1 point
(B) linearly proportional to the central frequency of the transducer (C) linearly proportional to the length	
(D) linearly proportional to the velocity of the acoustic wave	
(A)	
(B)	
(C)	
(D)	
No, the answer is incorrect. Score: 0	
Accepted Answers: (A)	
1 .	1 point
For an acoustic transducer with $H=2$ mm , $L=5$ cm , $f=40$ MHz , in dense flint gla $1.92, \overline{p}=0.25, v_a=3.1\times 10^3 m/s$ and $\rho=6.3\times 10^3$ kg/m^3 , the calculated value	
angle is (A) 0.12°	
(B) 0.25°	
(C) 0.41°	
(D) 0.84°	
(A)	
(B)	
(C)	
(D)	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
(A)	
	1 point
Suppose, the frequency of a piezo-electric crystal 6 MHz, velocity of the acoustic wave in m/s and the wavelength of the input light is 632.8 nm. What is the angle between 0 th ar	
Raman-Nath diffracted beam?	
(A) 0.09°	
(B) 0.11° (C) 0.54°	
(D) 1.21°	
(A)	
(B)	
(c)	
(D)	
No, the answer is incorrect. Score: 0	
Accepted Answers: (B)	
9)	1 point

1 point

About Raman-Nath acousto-optic diffraction of light waves, which of the following is/are correct

- (A) The direction of the **+1 order** diffracted wave is given by the relation $\sin\theta_{+1}=\frac{\lambda_0}{n_0\Lambda}$
- (B) The transmitted electric fields in various diffraction orders are proportional to the respectiv orders of Bessel's functions
- (C) If the incident acoustic wave is *amplitude* modulated, 1st order diffracted beam will be *inte* modulated
- (D) only +1/-1 order diffracted waves have the same frequency as that of the incident wave

(A) (B) (C)		
(D) No, the answer is incorrect. Score: 0		
Accepted Answers: (A) (B) (C)		

Which of the following is/are the requirement/s of Bragg acousto-optic modulators?

- (A) The angle of the input optical beam should be twice the Bragg angle i.e., $2 heta_{
 m B}$
- (B) The +1 or -1 order of diffracted beam is taken as the output beam of the modulator
- (C) The interaction length between optical and the acoustic beams is long, i.e., $L\gg \frac{\Lambda^2}{\lambda}$
- (D) The modulation depth is given as $\eta_{\rm B}=rac{I_0-I}{I_0}$, where I_0 and I refer to incident and diffracted intensity

(A) (B) (C) (D)	
No, the answer is incorrect. Score: 0	
Accepted Answers: (C)	
11)	1 point

Questions 11 - 12 are based on the magneto-optic effect.

The magneto-optic effect can be broadly classified on the basis of transmission, reflection, and absorption of the light wave by/through magnetic materials. Which of the following statement/ is/are correct?

- (A) In the **transmission mode**, a linearly polarised light travels through a magnetised sample, th plane of polarisation undergoes a rotation
- (B) In the transmission mode, if the direction of magnetisation is parallel to the optical path, so configuration is known as Faraday effect
- (C) Kerr effect in magneto-optics corresponds to reflection mode: the polarisation of reflected from the surface of a magnetized material undergoes a change
- (D) **Absorption mode** of magneto-optic effect corresponds to the difference in the absorption coefficient of LCP and RCP components of the light

(A)		
(B)		
(c)		
(D)		
No, the answer is incorrect.		
Score: 0		
Accepted Answers:		

(A)	
(B)	
(C)	
(D)	
12) 1 point	
In case of magneto-optic Faraday effect, a plane polarised light passes through a magnetised s	ŝĉ
acting as an optical medium. The direction of light path and that of magnetisation are the same	е
(A) a linearly polarised light when passes through a magnetised sample the emerging light is st linearly polarised	ti
(B) a linearly polarised light when passes through a magnetised sample, the emerging light is elliptically polarised	
(C) the outcome of Faraday effect is independent of the length of light path interacting with the magnetised optical medium	16
(D) the outcome of Faraday effect is directly proportional to the strength of magnetisation of t optical medium with which the light interacts	h
(A)	
(B)	
(C)	
(D)	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
(A) (D)	

Previous Page

End