Courses »Modern Optics Announcements Course Ask a Question Progress Mentor FAQ

Unit 2 - Week 1

Course
Outline
How to access the
portal
Week 1
Lecture 1 :
Maxwell's
equations and
electromagnetic
waves
Lecture 2 :
Maxwell's
equations and
electromagnetic
waves (Contd.)
e Lecture 3 :
Maxwell's
equations and
electromagnetic
waves (Contd.)
e Lecture 4 :
Maxwell's
equations and
electromagnetic
waves (Contd.)
eLecture 5 :
Maxwell's
equations and
electromagnetic
waves (Contd.)
eLecture 6 :
Maxwell's
equations and
electromagnetic
waves (Contd.)
Lecture 7 :
Maxwell's
equations and
electromagnetic Assignment
waves (Contd.)
Lecture Materials
Quiz

Assignment 1

The due date for submitting this assignment has passed. Due on 2018-08-15, 23:59 IST. As per our records you have not submitted this assignment.
1)

1 point
Consider an electric field of the form: $E=0.2 \cos \left(t-\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)$. The wave propagates along

```
            xy plane making an angle of }\frac{\pi}{4}\mathrm{ with }x\mathrm{ axis
            (A)
            z \text { direction making an angle of } \frac { \pi } { 4 } \text { with } y \text { axis}
```

```
            xy plane making an angle of }\frac{\pi}{4}\mathrm{ with z axis
(C)
            xz plane making an angle of }\frac{\pi}{4}\mathrm{ with }x\mathrm{ axis
            (D)
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
$x y$ plane making an angle of $\frac{\pi}{4}$ with x axis
(A)
2) An electromagnetic wave propagating in free space is described by the following equation

1 point $E(z, t)=\hat{x} 5 \cos (\omega t-k z)+\hat{y} 5 \sin (\omega t-k z)$ volt/meter. The wave is(A) elliptically polarised(B) circularly polarised(C) linearly polarised(D) unpolarised

No, the answer is incorrect.
Score: 0
Accepted Answers:
(B) circularly polarised
3) An electric field is given as $\vec{E}=\hat{\imath} E_{x}+\hat{\jmath} E_{y}+\hat{k} E_{z}$. The value of $\nabla \cdot(\nabla \times \vec{E})$ is

1 point
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

Funded by

Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Week 10
Week 11
Week 12
Download Videos

Assignment Solution
(D) zero

No, the answer is incorrect.
Score: 0
Accepted Answers:
(D) zero
4)

1 point
Consider the following two electric fields specified at time $t=0$ that are respectively forward and back propagating:
$E(z, 0)=\hat{x} E_{0} \cos k z$ (forward) and $E(z, 0)=\hat{y} E_{0} \cos k z$ (backward), where k is the wave number. The corresponding fields $E(z, t)$ are

$E(z, t)=\hat{x} E_{0} \cos (\omega t+k z)$ (forward) and $E(z, t)=\hat{y} E_{0} \cos (\omega t-k z)$ (backward)

- (B)
$E(z, t)=\hat{x} E_{0} \cos (\omega t-k z)$ (forward) and $E(z, t)=\hat{y} E_{0} \cos (\omega t+k z)$ (backward)
$E(z, t)=\hat{x} E_{0} \cos (\omega t+k z)$ (forward) and $E(z, t)=\hat{y} E_{0} \cos (\omega t+k z)$ (backward)(D)
$E(z, t)=\hat{x} E_{0} \cos (\omega t-k z)$ (forward) and $E(z, t)=\hat{y} E_{0} \cos (\omega t-k z)$ (backward)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(B)

$$
E(z, t)=\hat{x} E_{0} \cos (\omega t-k z) \text { (forward) and } E(z, t)=\hat{y} E_{0} \cos (\omega t+k z) \text { (backward) }
$$

5)

The electric field of an electromagnetic wave that is traveling along x-direction in free space given by $E=E_{0} \cos (k x-\omega t)$. The (i) Poynting's vector and (ii) flux density (irradiance, associated with the wave are respectively

$$
\text { (i) } \vec{P}=c^{2} \varepsilon_{0}\left(\vec{E}_{0} \times \vec{B}_{0}\right) \cos ^{2}(k x-\omega t) \quad \text { and } \quad \text { (ii) } I=\frac{1}{2} c \varepsilon_{0} E_{0}^{2}
$$

$$
\text { (i) } \vec{P}=c^{2} \varepsilon_{0}^{2}\left(\vec{E}_{0} \times \vec{B}_{0}\right) \cos ^{2}(k x-\omega t) \quad \text { and } \quad \text { (ii) } I=\frac{1}{2} \varepsilon_{0} c^{2} E_{0}^{2}
$$

(B)

$$
\text { (i) } \vec{P}=c^{2} \varepsilon_{0}\left(\vec{E}_{0} \times \vec{B}_{0}\right) \cos ^{2}(k x+\omega t) \quad \text { and } \quad \text { (ii) } I=\frac{1}{2 \varepsilon_{0}} c E_{0}^{2}
$$(C)

$$
\text { (i) } \vec{P}=\frac{c^{2}}{2} \varepsilon_{0}\left(\vec{E}_{0} \times \vec{B}_{0}\right) \cos ^{2}(k x-\omega t) \quad \text { and } \quad \text { (ii) } I=\frac{1}{2} c^{2} \varepsilon_{0}^{2} E_{0}^{2}
$$

(D)

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\text { (i) } \vec{P}=c^{2} \varepsilon_{0}\left(\vec{E}_{0} \times \vec{B}_{0}\right) \cos ^{2}(k x-\omega t) \quad \text { and } \quad \text { (ii) } I=\frac{1}{2} c \varepsilon_{0} E_{0}^{2}
$$

(A)

If \hat{r} denotes the unit vector along the position vector \vec{r}, then the correct value of $\nabla \vec{r}$ is
(A)(B) $|\vec{r}|$
(C) \hat{r}
(D) zero

No, the answer is incorrect.
Score: 0
Accepted Answers:
(C) \hat{r}
7)

1 point
For a travelling plane electromagnetic wave, the energy density of electric field U_{E}, that of magnetic field U_{H} are related as
$U_{E}>U_{H}$
(A)
$U_{E}<U_{H}$
(B)
(C) $U_{E}^{2}=U_{H}$
(D) $U_{E}=U_{H}$

No, the answer is incorrect
Score: 0
Accepted Answers:
(D) $U_{E}=U_{H}$
8)

1 point

The earth's surface receives sunlight of energy/unit time/unit area (normal to direction of sunligh is 2100 Joules $/$ meter $^{2} /$ second. Given that the free space permeability, $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Henry}$ meter and free space permittivity, $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Farad} /$ meter. From these data, tr strength of (i) electric and (ii) magnetic field of sun's radiation on earth's surface respectively are
(i) $E_{0} \approx 1255$ volt/meter and (ii) $H_{0} \approx 3.3$ Ampere - turn $/$ meter
(A)
(i) $E_{0} \approx 2502$ volt/meter and
(ii) $H_{0} \approx 4.3$ Ampere - turn/meter(B)
(i) $E_{0} \approx 623$ volt/meter and \quad (ii) $H_{0} \approx 5.3$ Ampere - turn/meter
(C)
(i) $E_{0} \approx 186$ volt/meter and \quad (ii) $H_{0} \approx 6.3$ Ampere-turn/meter(D)

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\text { (i) } E_{0} \approx 1255 \text { volt/meter and } \quad \text { (ii) } H_{0} \approx 3.3 \text { Ampere - turn } / \text { meter }
$$

(A)
9)

The conductivity of silver is $\sigma=6.8 \times 10^{7}$ Siemens/meter and its relative permeability is $\mu_{r}=$

1. Consider the propagation of an electromagnetic wave of frequency $f=2 \mathrm{MHz}$ in silver. Given that the free space permeability, $\mu_{0}=4 \pi \times 10^{-7}$ Henry/meter. (i) The skin depth δ and (ii) the phase velocity respectively are close to
(A) $\left(\right.$ i) 8.6×10^{-4} mete
and
(ii) 243 meter $/$ second
(B) (i) 4.3×10^{-5} meter and
(ii) 542 meter $/$ second
(C) (i) 3.3×10^{-6} meter
and
(ii) 463 meter $/$ second
(D) (i) 7.9×10^{-5} meter
and
(ii) 162 meter $/$ second

No, the answer is incorrect.
Score: 0
Accepted Answers:
(B) (i) 4.3×10^{-5} meter
and
(ii) 542 meter $/$ second
${ }^{10)}$ The electric field components of a plane electromagnetic wave are $E_{x}=\frac{1}{2} E_{0} \cos (\omega t-k z)$ and $E_{y}=\frac{\sqrt{3}}{2} E_{0} \sin (\omega t-k z)$. The state of polarization of the wave is(A) right-elliptical(B) left-circular(C) linear(D) left-elliptical

No, the answer is incorrect.
Score: 0
Accepted Answers
(D) left-elliptical
11)

1 point
Which of the following about the Maxwell's equations is true? Symbols $\vec{J}_{d}, \vec{J}_{c}, \rho, \vec{D}$ have their usual meaning.

$$
\nabla \cdot \vec{\jmath}_{d}=\partial \rho / \partial t
$$(B) $\nabla \cdot \vec{j}_{c}=\partial \rho / \partial t$(C) $\vec{J}_{d}=-\partial \vec{D} / \partial t$(D) $\vec{J}_{c}=\partial \vec{D} / \partial t$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\nabla \cdot \vec{J}_{d}=\partial \rho / \partial t
$$

(A)
12) The field is specified in the following complex (phasor) form: $E(z)=-3 j \hat{x} e^{-j k z}$.
(A)
$E_{x}(z, t)=-3 \cos (\omega t-k z-\pi / 2) ; E_{y}(z, t)=0 ; H_{x}(z, t)=-\left(1 / \omega \mu_{0}\right) E_{x}(z, t) ; H_{y}(z, t)=0$
(B)
$E_{x}(z, t)=0 ; E_{y}(z, t)=3 \cos (\omega t-k z-\pi / 2) ; H_{x}(z, t)=\left(1 / \omega \mu_{0}\right) E_{x}(z, t) ; H_{y}(z, t)=0 ;$
$E_{x}(z, t)=-3 \cos (\omega t-k z+\pi / 2) ; E_{y}(z, t)=0 ; H_{x}(z, t)=0 ; H_{y}(z, t)=\left(1 / \omega \mu_{0}\right) E_{x}(z, t)$
(D)
$E_{x}(z, t)=3 \cos (\omega t-k z-\pi / 2) ; E_{y}(z, t)=0 ; H_{x}(z, t)=0 ; H_{y}(z, t)=\left(1 / \omega \mu_{0}\right) E_{x}(z, t)$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(D)

$$
E_{x}(z, t)=3 \cos (\omega t-k z-\pi / 2) ; E_{y}(z, t)=0 ; H_{x}(z, t)=0 ; H_{y}(z, t)=\left(1 / \omega \mu_{0}\right) E_{x}(z, t)
$$

