ourses » Modern Op	tics Announcements Course Ask a Question Progress Mentor FAQ
Jnit 2 - Wee	
Course outline	Assignment 1
How to access the portal	The due date for submitting this assignment has passed.Due on 2018-08-15, 23:59 ISTAs per our records you have not submitted this assignment.
Week 1	1) 1 point Consider an electric field of the form: $E = 0.2 \cos\left(t - \frac{x}{\sqrt{2}} - \frac{y}{\sqrt{2}}\right)$. The wave propagates along
 Lecture 1 : Maxwell's equations and electromagnetic waves 	xy plane making an angle of $\frac{\pi}{4}$ with x axis
 Lecture 2 : Maxwell's equations and electromagnetic waves (Contd.) 	z direction making an angle of $\frac{\pi}{4}$ with y axis (B) xy plane making an angle of $\frac{\pi}{4}$ with z axis (C)
 Lecture 3 : Maxwell's equations and electromagnetic waves (Contd.) 	xz plane making an angle of $\frac{\pi}{4}$ with x axis (D) No, the answer is incorrect. Score: 0
 Lecture 4 : Maxwell's equations and electromagnetic waves (Contd.) 	Accepted Answers: $xy \ plane \ making \ an \ angle \ of \frac{\pi}{4} \ with \ x \ axis$ (A)
 Lecture 5 : Maxwell's equations and electromagnetic waves (Contd.) 	²⁾ An electromagnetic wave propagating in free space is described by the following equation $E(z,t) = \hat{x}5\cos(\omega t - kz) + \hat{y}5\sin(\omega t - kz) \ volt/meter$. The wave is
Lecture 6 : Maxwell's equations and electromagnetic waves (Contd.)	 (A) elliptically polarised (B) circularly polarised (C) linearly polarised (D) unpolarised
 Lecture 7 : Maxwell's equations and electromagnetic waves (Contd.) 	No, the answer is incorrect. Score: 0 Accepted Answers: (B) circularly polarised
Lecture Materials	(B) circularly polarised (B) circularly polarised (B) circularly polarised (C) $(\nabla \times \vec{E})$ is 1 polarised (C) $(\nabla \times \vec{E})$ is 1 polarised

Powered by

Funded by

Modern Optics - - Unit 2 - Week 1

Week 4	Devel (D) zero
Week 5	No, the answer is incorrect. Score: 0
Week 6	Accepted Answers:
Week 7	(D) zero 4) 1 point
Week 8	Consider the following two electric fields specified at time $t = 0$ that are respectively forward and
Week 9	back propagating:
Week 10	$E(z,0) = \hat{x}E_0 \cos kz$ (forward) and $E(z,0) = \hat{y}E_0 \cos kz$ (backward), where k is the wave number. The corresponding fields $E(z,t)$ are
Week 11	
Week 12	(A)
Download Videos	$E(z,t) = \hat{x}E_0\cos(\omega t + kz)$ (forward) and $E(z,t) = \hat{y}E_0\cos(\omega t - kz)$ (backward)
Assignment	О (В)
Solution	$E(z,t) = \hat{x}E_0\cos(\omega t - kz)$ (forward) and $E(z,t) = \hat{y}E_0\cos(\omega t + kz)$ (backward)
	(C)
	$E(z,t)=\hat{x}E_0\cos(\omega t+kz)$ (forward) and $E(z,t)=\hat{y}E_0\cos(\omega t+kz)$ (backward)
	(D)
	$E(z,t) = \hat{x}E_0\cos(\omega t - kz)$ (forward) and $E(z,t) = \hat{y}E_0\cos(\omega t - kz)$ (backward)
	No, the answer is incorrect. Score: 0
	Accepted Answers: (B)
	$E(z,t) = \hat{x}E_0 \cos(\omega t - kz)$ (forward) and $E(z,t) = \hat{y}E_0 \cos(\omega t + kz)$ (backward)

5)

6)

1 point

The electric field of an electromagnetic wave that is traveling along x -direction in free space given by $E = E_0 \cos(kx - \omega t)$. The (i) Poynting's vector and (ii) flux density (irradiance, associated with the wave are respectively

If \hat{r} denotes the unit vector along the position vector \vec{r} , then the correct value of $\nabla \vec{r}$ is $|\vec{r}|^2$ (A) (B) (В) \bigcirc (C) \hat{r} (D) zero No, the answer is incorrect. Score: 0 Accepted Answers: (C) \hat{r} 7) 1 point For a travelling plane electromagnetic wave, the energy density of electric field U_E , that of magnetic field U_H are related as $\bigcirc U_E > U_H$ (A) О (В) U_E < U_H $\bigcup_{(C)} U_E^2 = U_H$ \bigcirc (D) $U_E = U_H$ No, the answer is incorrect. Score: 0 **Accepted Answers:** (D) $U_E = U_H$ 8) 1 point

The earth's surface receives sunlight of energy/unit time/unit area (normal to direction of sunligh is 2100 *Joules/meter*²/second. Given that the free space permeability, $\mu_0 = 4\pi \times 10^{-7}$ Henry meter and free space permittivity, $\varepsilon_0 = 8.85 \times 10^{-12}$ Farad/meter. From these data, th strength of (i) electric and (ii) magnetic field of sun's radiation on earth's surface respectively are

(i) $E_0 \approx 1255 \ volt/meter$ and (ii) $H_0 \approx 3.3 \ Ampere - turn/meter$ (A) (i) $E_0 \approx 2502 \ volt/meter$ and (ii) $H_0 \approx 4.3 \ Ampere-turn/meter$ 🔘 (В) (i) $E_0 \approx 623 \ volt/meter$ and (ii) $H_0 \approx 5.3 \text{ Ampere} - turn/meter$ (C) (i) $E_0 \approx 186 \ volt/meter$ and (ii) $H_0 \approx 6.3 \ Ampere - turn/meter$ (D) No, the answer is incorrect. Score: 0 Accepted Answers: (i) $E_0 \approx 1255 \ volt/meter$ and (ii) $H_0 \approx 3.3$ Ampere – turn/meter (A) 9) 1 point The conductivity of silver is $\sigma = 6.8 \times 10^7$ Siemens/meter and its relative permeability is $\mu_r = 1$. Consider the propagation of an electromagnetic wave of frequency f = 2 MHz in silver. Given that the free space permeability, $\mu_0 = 4\pi \times 10^{-7}$ Henry/meter. (i) The skin depth δ and (ii) the phase velocity respectively are close to

(A) (i) $8.6 imes 10^{-4} meter$ and(ii) 243 meter/second (B) (i) $4.3 imes 10^{-5} meter$ and(ii) 542 meter/second (C) $(i) \ 3.3 imes 10^{-6} meter$ (ii) 463 meter/second and \bigcirc (D) (i) $7.9 imes 10^{-5} meter$ (ii) 162 meter/second andNo, the answer is incorrect. Score: 0 Accepted Answers: (B) (i) $4.3 imes 10^{-5} meter$ (ii) 542 meter/second and ¹⁰. The electric field components of a plane electromagnetic wave are $E_x = \frac{1}{2}E_0 \cos(\omega t - kz)$ and 1 point $E_y = \frac{\sqrt{3}}{2} E_0 \sin(\omega t - kz)$. The state of polarization of the wave is (A) right-elliptical (B) left-circular (C) linear (D) left-elliptical No, the answer is incorrect. Score: 0 **Accepted Answers:** (D) left-elliptical 11) 1 point Which of the following about the Maxwell's equations is true? Symbols $\vec{j}_d, \vec{j}_c, \rho, \vec{D}$ have their usual meaning. $\bigcirc (A) \quad \nabla. \vec{j}_d = \partial \rho / \partial t$ $\bigcirc (B) \nabla . \vec{j}_c = \partial \rho / \partial t$ $\ \ \, \prod_{(C)} \ \ \, \vec{j}_d = -\partial \vec{D} / \partial t$ $(D) \vec{j}_c = \partial \vec{D} / \partial t$ No, the answer is incorrect. Score: 0 **Accepted Answers:** $\nabla . \vec{j}_d = \partial \rho / \partial t$ (A) 1 point ¹² The field is specified in the following complex (phasor) form: $E(z) = -3j\hat{x}e^{-jkz}$. The corresponding real-valued electric and magnetic field components are (A) $E_x(z,t) = -3\cos(\omega t - kz - \pi/2)$; $E_y(z,t) = 0$; $H_x(z,t) = -(1/\omega\mu_0)E_x(z,t)$; $H_y(z,t) = 0$

(B)

$$E_x(z,t) = 0 ; E_y(z,t) = 3 \cos(\omega t - kz - \pi/2) ; H_x(z,t) = (1/\omega\mu_0)E_x(z,t); H_y(z,t) = 0 ;$$

(C)
 $E_x(z,t) = -3\cos(\omega t - kz + \pi/2) ; E_y(z,t) = 0 ; H_x(z,t) = 0 ; H_y(z,t) = (1/\omega\mu_0)E_x(z,t)$
(D)
 $E_x(z,t) = 3\cos(\omega t - kz - \pi/2) ; E_y(z,t) = 0 ; H_x(z,t) = 0 ; H_y(z,t) = (1/\omega\mu_0)E_x(z,t)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
(D)
 $E_x(z,t) = 3\cos(\omega t - kz - \pi/2) ; E_y(z,t) = 0 ; H_x(z,t) = 0 ; H_y(z,t) = (1/\omega\mu_0)E_x(z,t)$

Previous Page

-

End