DEPARTMENT OF PHYSICS
 Indian Institute of Technology Kharagpur
 Classical Mechanics-I
 Course: PH20007

Assignment-7: Assignment-7 (Rigid body dynamics-2)

1. Moment of inertia of a uniform square plate of length $x=y=a$ and mass M about x and y axes are
(a) $I_{x x}=\frac{1}{3} M a^{2}$ and $I_{y y}=\frac{1}{3} M a^{2}$
(b) $I_{x x}=\frac{2}{3} M a^{2}$ and $I_{y y}=\frac{2}{3} M a^{2}$
(c) $I_{x x}=\frac{1}{3} M a^{2}$ and $I_{y y}=\frac{3}{3} M a^{2}$
(d) $I_{x x}=\frac{2}{3} M a^{2}$ and $I_{y y}=\frac{1}{3} M a^{2}$
2. Moment of inertia of a uniform square plate of length $x=y=a$ and mass M about z axis is
(a) $I_{z z}=\frac{1}{3} M a^{2}$
(a) $I_{z z}=\frac{3}{2} M a^{2}$
(a) $I_{z z}=M a^{2}$
(a) $I_{z z}=\frac{2}{3} M a^{2}$
3. Product of inertia of a uniform square plate of length $x=y=a$ and mass M are
(a) $I_{x y}=I_{y x}=0, I_{x z}=I_{z x}=0$ and $I_{y z}=I_{z y}=0$
(b) $I_{x y}=I_{y x}=-\frac{1}{4} M a^{2}, I_{x z}=I_{z x}=0$ and $I_{y z}=I_{z y}=0$
(c) $I_{x y}=I_{y x}=0, I_{x z}=I_{z x}=-\frac{1}{4} M a^{2}$ and $I_{y z}=I_{z y}=-\frac{1}{4} M a^{2}$
(d) $I_{x y}=I_{y x}=0, I_{x z}=I_{z x}=-\frac{1}{4} M a^{2}$ and $I_{y z}=I_{z y}=0$
4. Principal moment of inertia of a uniform square plate of length $x=y=a$ and mass M are
(a) $I_{1}=0, I_{2}=0$ and $I_{3}=0$
(b) $I_{1}=\frac{1}{12} M a^{2}, I_{2}=0$ and $I_{3}=\frac{7}{12} M a^{2}$
(c) $I_{1}=\frac{1}{12} M a^{2}, I_{2}=\frac{7}{12} M a^{2}$ and $I_{3}=0$
(d) $I_{1}=\frac{1}{12} M a^{2}, I_{2}=\frac{7}{12} M a^{2}$ and $I_{3}=\frac{2}{3} M a^{2}$
5. Moment of inertia of a solid circular plate of radius a, height h and mass M about an axis on the surface of the cylinder and parallel to the axis of the cylinder
(a) $M a^{2}$
(b) $\frac{2}{3} M a^{2}$
(c) $\frac{3}{2} M a^{2}$
(d) $\frac{1}{2} M a^{2}$
6. Radius of gyration of a rectangular plate with sides a and b about an axis perpendicular to the plate and passing through a vertex is
(a) $\frac{1}{3} M\left(a^{2}+b^{2}\right)$
(b) $\sqrt{\frac{1}{3}\left(a^{2}+b^{2}\right)}$
(c) $\sqrt{\frac{1}{3} M\left(a^{2}+b^{2}\right)}$
(d) $\frac{1}{3}\left(a^{2}+b^{2}\right)$
7. Calculate the radius of gyration of a spherical shell of mass M and radius R with origin (fixed point) at its center
(a) $\sqrt{\frac{3}{8}} R$
(b) $\sqrt{\frac{2}{5}} R$
(c) $\sqrt{\frac{2}{3}} R$
(d) $\sqrt{\frac{3}{5}} R$
8. A solid cylinder of radius a and mass M rolls without slipping down an inclined plane of angle θ. The acceleration is
(a) $g \sin \theta$
(b) $\frac{1}{3} g \sin \theta$
(c) $\frac{2}{3} \sin \theta$
(d) $\frac{2}{3} g \sin \theta$
9. Equation for the ellipsoid of inertia corresponding to a square plate of length $x=y=a$ is
(a) $\rho_{x}^{2}+\rho_{y}^{2}+2 \rho_{z}^{2}-\frac{3}{2} \rho_{x} \rho_{y}=\frac{3}{M a^{2}}$
(b) $\rho_{x}^{2}+\rho_{y}^{2}+2 \rho_{z}^{2}+\frac{3}{2} \rho_{x} \rho_{y}=\frac{3}{M a^{2}}$
(c) $\rho_{x}^{2}-\rho_{y}^{2}-2 \rho_{z}^{2}-\frac{3}{2} \rho_{x} \rho_{y}=\frac{3}{M a^{2}}$
(d) $\rho_{x}^{2}+\rho_{y}^{2}+2 \rho_{z}^{2}-\frac{3}{2} \rho_{x} \rho_{y}=-\frac{3}{M a^{2}}$
10. If a rigid body with one point fixed rotates with angular velocity $\vec{\omega}$ and has angular momentum $\vec{\Omega}$, then kinetic energy can be written as
(a) $\frac{1}{2}\left(I_{x x} \omega_{x}^{2}+I_{y y} \omega_{y}^{2}+I_{z z} \omega_{z}^{2}\right.$
(b) $\left.2 I_{x y} \omega_{x} \omega_{y}+2 I_{x z} \omega_{x} \omega_{z}+2 I_{y z} \omega_{y} \omega_{z}\right)$
(c) $\frac{1}{2}\left(I_{x x} \omega_{x}^{2}+I_{y y} \omega_{y}^{2}+I_{z z} \omega_{z}^{2}-2 I_{x y} \omega_{x} \omega_{y}-2 I_{x z} \omega_{x} \omega_{z}-2 I_{y z} \omega_{y} \omega_{z}\right)$
(d) $\frac{1}{2}\left(I_{x x} \omega_{x}^{2}+I_{y y} \omega_{y}^{2}+I_{z z} \omega_{z}^{2}+2 I_{x y} \omega_{x} \omega_{y}+2 I_{x z} \omega_{x} \omega_{z}+2 I_{y z} \omega_{y} \omega_{z}\right)$

End

