DEPARTMENT OF PHYSICS
 Indian Institute of Technology Kharagpur
 Classical Mechanics-I
 Course: PH20007
 Assignment-6: Assignment-6 (Rigid body dynamics)

1. A body is thrown vertically upwards with a velocity of $100 \mathrm{~m} / \mathrm{s}$ at a 60° latitude. Calculate the displacement from the vertical in 10 s
(a) 24.5 cm on the west
(b) 24.5 cm on the east
(c) 24.5 cm on the north
(d) 24.5 cm on the south
2. A quadrilateral ABCD has masses $1,2,3$ and 4 units located at its vertices $\mathrm{A}(-1,-2,2), \mathrm{B}(3$, $2,-1), \mathrm{C}(1,-2,4)$ and $\mathrm{D}(3,1,2)$. Find the center of mass
(a) $(2,0,2)$
(b) $(2,0,-2)$
(c) $(-2,0,2)$
(d) $(-2,0,-2)$
3. Three particles of masses $2,1,3$ respectively have position vectors $\overrightarrow{r_{1}}=5 t \hat{i}-2 t^{2} \hat{j}+(3 t-2) \hat{k}$, $\overrightarrow{r_{2}}=(2 t-3) \hat{i}+\left(12-5 t^{2}\right) \hat{j}+\left(4+6 t-3 t^{3}\right) \hat{k}, \overrightarrow{r_{3}}=(2 t-1) \hat{i}+\left(t^{2}+2\right) \hat{j}-t^{3} \hat{k}$ where t is the time. Find the velocity of center of mass at $t=1 \mathrm{sec}$
(a) $\hat{i}-\hat{j}-\hat{k}$
(b) $3 \hat{i}-2 \hat{j}+\hat{k}$
(c) $3 \hat{i}+2 \hat{j}-\hat{k}$
(d) $3 \hat{i}-2 \hat{j}-\hat{k}$
4. Calculate the center of mass of a uniform semi-circular wire of radius a
(a) $\frac{a}{2 \pi} \hat{y}$
(b) $\frac{3 a}{2 \pi} \hat{y}$
(c) $\frac{a}{\pi} \hat{y}$
(d) $\frac{2 a}{\pi} \hat{y}$
5. Two particles having masses m_{1} and m_{2} move so that their relative velocity is v and the velocity of their center of mass is \bar{v}. If $M=m_{1}+m_{2}$ is the total mass and $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ is the reduced mass of the system, the total kinetic energy is
(a) $\frac{1}{2} M v^{2}+\frac{1}{2} \mu \bar{v}^{2}$
(b) $\frac{1}{2} M \bar{v}^{2}+\frac{1}{2} \mu v^{2}$
(c) $\frac{1}{2} M v^{2}-\frac{1}{2} \mu \bar{v}^{2}$
(d) $\frac{1}{2}(M+\mu) \bar{v}^{2}$
6. Degrees of freedom of a linear tri-atomic molecule is
(a) 3
(b) 5
(c) 6
(d) 7
7. A tri-atomic molecule is moving in a space such that distance between any two of them is always constant. Degrees of freedom of the system is
(a) 3
(b) 5
(c) 6
(d) 7
8. Find the center of mass of a semi-circular plate of radius a
(a) $\frac{4 a}{3 \pi} \hat{y}$
(b) $\frac{a}{3 \pi} \hat{y}$
(c) $\frac{4 a}{\pi} \hat{y}$
(d) $\frac{3}{4 \pi} \hat{y}$
9. Calculate the moment of inertia of a right circular cone of height h and radius a about its axis
(a) $\frac{2}{5} M a^{2}$
(b) $\frac{3}{10} M a^{2}$
(c) $\frac{1}{10} M a^{2}$
(d) $\frac{7}{10} M a^{2}$
10. Two particles of masses m_{1} and m_{2} are connected by a rigid massless rod of length a and move freely in a plane. The moment of inertia of the system about an axis perpendicular to the plane and passing through center of mass is
(a) $\frac{1}{2} \mu a^{2}$
(b) $\frac{2}{3} \mu a^{2}$
(c) $\frac{2}{5} \mu a^{2}$
(d) μa^{2}

End

