DEPARTMENT OF PHYSICS Indian Institute of Technology Kharagpur **Classical Mechanics-I** Course: PH20007 Assignment-6: Assignment-6 (Rigid body dynamics)

- 1. A body is thrown vertically upwards with a velocity of 100 m/s at a 60° latitude. Calculate the displacement from the vertical in 10 s
 - (a) 24.5 cm on the west
 - (b) 24.5 cm on the east
 - (c) 24.5 cm on the north
 - (d) 24.5 cm on the south
- 2. A quadrilateral ABCD has masses 1, 2, 3 and 4 units located at its vertices A(-1, -2, 2), B(3, 2, -1), C(1, -2, 4) and D(3, 1, 2). Find the center of mass
 - (a) (2, 0, 2)
 - (b) (2, 0, -2)
 - (c) (-2, 0, 2)
 - (d) (-2, 0, -2)
- 3. Three particles of masses 2, 1, 3 respectively have position vectors $\vec{r_1} = 5t\hat{i} 2t^2\hat{j} + (3t-2)\hat{k}$, $\vec{r_2} = (2t-3)\hat{i} + (12-5t^2)\hat{j} + (4+6t-3t^3)\hat{k}, \ \vec{r_3} = (2t-1)\hat{i} + (t^2+2)\hat{j} - t^3\hat{k}$ where t is the time. Find the velocity of center of mass at t = 1sec(a) $\hat{i} - \hat{j} - \hat{k}$ (b) $3\hat{i} - 2\hat{j} + \hat{k}$ (c) $3\hat{i} + 2\hat{j} - \hat{k}$ (d) $3\hat{i} - 2\hat{j} - \hat{k}$
- 4. Calculate the center of mass of a uniform semi-circular wire of radius a
 - $\begin{array}{l} \text{(a)} \ \frac{a}{2\pi}\hat{y}\\ \text{(b)} \ \frac{3a}{2\pi}\hat{y}\\ \text{(c)} \ \frac{a}{\pi}\hat{y}\\ \text{(d)} \ \frac{2a}{\pi}\hat{y} \end{array}$
- 5. Two particles having masses m_1 and m_2 move so that their relative velocity is v and the velocity of their center of mass is \bar{v} . If $M = m_1 + m_2$ is the total mass and $\mu = \frac{m_1 m_2}{m_1 + m_2}$ is the reduced mass of the system, the total kinetic energy is
 - (a) $\frac{1}{2}Mv^2 + \frac{1}{2}\mu\bar{v}^2$ (b) $\frac{1}{2}M\bar{v}^2 + \frac{1}{2}\mu v^2$ (c) $\frac{1}{2}Mv^2 - \frac{1}{2}\mu\bar{v}^2$

 - (d) $\frac{1}{2}(M+\mu)\bar{v}^2$
- 6. Degrees of freedom of a linear tri-atomic molecule is (a) 3

(b) 5

- (c) 6
- (d) 7
- 7. A tri-atomic molecule is moving in a space such that distance between any two of them is always constant. Degrees of freedom of the system is
 - (a) 3
 - (b) 5
 - (c) **6**
 - (d) 7

8. Find the center of mass of a semi-circular plate of radius a

- (a) $\frac{4a}{3\pi}\hat{y}$

- (b) $\frac{a}{3\pi}\hat{y}$ (c) $\frac{4a}{\pi}\hat{y}$ (d) $\frac{3a}{4\pi}\hat{y}$
- 9. Calculate the moment of inertia of a right circular cone of height h and radius a about its axis
 - (a) $\frac{2}{5}Ma^2$ (b) $\frac{3}{10}Ma^2$ (c) $\frac{1}{10}Ma^2$ (d) $\frac{7}{10}Ma^2$
- 10. Two particles of masses m_1 and m_2 are connected by a rigid massless rod of length a and move freely in a plane. The moment of inertia of the system about an axis perpendicular to the plane and passing through center of mass is
 - (a) $\frac{1}{2}\mu a^2$ (b) $\frac{2}{3}\mu a^2$ (c) $\frac{2}{5}\mu a^2$

 - (d) μa^2

End