DEPARTMENT OF PHYSICS Indian Institute of Technology Kharagpur **Classical Mechanics-I** Course: PH20007 Assignment-5: Assignment-5 (Moving coordinate system)

- 1. A particle of mass m moves under the action of a central force whose potential is V(r) = $kmr^{3}(k > 0)$. For what angular momentum the orbit will be a circle of radius a about the origin
 - (a) $\sqrt{3kma^{5/2}}$ (b) $\sqrt{3k}ma^{3/2}$ (c) $\sqrt{3mk}a^{5/2}$

 - (d) $\sqrt{3mk}a^{3/2}$
- 2. The effective P.E. of a particle moving in a central force field is given by $V' = V(r) + \frac{l^2}{2mr^2}$. If the central potential is $\frac{1}{2}kr^2$, calculate the angular frequency (ω) for circular orbit
 - (a) $\sqrt{\frac{m}{k}}$ (a) $\sqrt{\frac{m}{2k}}$ (a) $\sqrt{\frac{2m}{k}}$

 - (d) $\sqrt{\frac{k}{m}}$
- 3. A particle moving in a central force field located at r = 0 describes the spiral $r = e^{-\theta}$. The law of force is
 - (a) $\propto \frac{1}{r}$ (b) $\propto \frac{1}{r^2}$ (c) $\propto \frac{1}{r^3}$ (d) $\propto \frac{1}{r^5}$
- 4. What will be the approximate time for one rotation for the plane of oscillation of the Foucault pendulum at 30° N latitude
 - (a) 48 hr
 - (b) 36 hr
 - (c) 24 hr
 - (d) 12 hr
- 5. What will be the horizontal component of the Coriolis force acting on a body of mass 1.5 kg moving northward with a horizontal velocity of 100 m/sec, at 30° N latitude on earth (a) 0.5 N along east
 - (b) 0.0109 N along east
 - (c) 0.9201 N along east
 - (d) 0 N

- 6. Two separate Foucault pendulum experiments were set up on same longitude 10,466 km apart from each other. The plane of one pendulum was seen to rotate clockwise at a time period of 27.6 hrs. The plane of other pendulum was seen to rotate anticlockwise direction with time period 42.9 hrs. From this data, approximate radius of the earth is:
 (a) 6350 km
 - (b) 6787 km
 - (c) 6024 km
 - (d) 6991 km
 - (d) 6991 km
- 7. Given that earth rotates once every 23 hr 56 min around the axis from the North to South Pole, calculate the angular velocity, ω , of the earth
 - (a) 7.29 $\times 10^{-3}$ rad/sec
 - (b) 7.29 $\times 10^{-5}$ rad/sec
 - (c) 51.21 $\times 10^{-5}$ rad/sec
 - (d) 17.84 $\times 10^{-4} \ \mathrm{rad/sec}$
- 8. An iceberg of mass 5×10^5 tons near the North Pole moves west at the rate of 8 km/day. Neglecting the curvature of the earth, calculate the magnitude and direction of the Coriolis force
 - (a) 6730 N and north
 - (b) 6730 N and south
 - (c) 6730 N and east
 - (d) 6730 N and west
- 9. A train of mass 1000 tons moves in the latitude 60° north. Find the magnitude and direction of the lateral force that the train exerts on the rails if it moves with a velocity of 15 m/s
 - (a) 2560 N and on the right rail
 - (b) 2560 N and on the left rail
 - (a) 1890 N and on the left rail
 - (a) 1890 N and on the right rail
- 10. A bucket full of water spins with $\vec{\omega}$ about the axis as shown in the figure. The shape of the water surface is given by
 - (a) $z = \frac{1}{2} \frac{\omega^2 r^2}{g}$ (b) $z = \frac{1}{2} \frac{\omega^2 g^2}{r}$ (c) $z = \frac{1}{2} \frac{\omega^3 r^2}{g^2}$ (d) $z = \frac{1}{3} \frac{\omega^2 r^2}{g}$

End

