DEPARTMENT OF PHYSICS Indian Institute of Technology Kharagpur Classical Mechanics-I Assignment-4: Motion under central force-3

- 1. A ballistic missile is launched from earth's surface. If the angular range of the missile is 2ϕ , the physical distance between the launching point and point of impact is
 - (a) $R_0\phi$
 - (b) $2R_0\phi$
 - (c) $4R_0\phi$
 - (d) $6R_0\phi$

2. Areal velocity of central orbit is proportional to

- (a) Speed at any point of the orbit
- (b) Angular acceleration at any point of the orbit
- (c) Angular velocity at any point of the orbit
- (d) Angular momentum
- 3. If gravitational force between two bodies had been inversely proportional to the third power of the distance between them, find out the escape velocity at the surface of the earth.
 - (i) $\sqrt{2gR}$
 - (ii) $\sqrt{\frac{1}{2}gR}$
 - (iii) $\sqrt{\frac{2}{3}gR}$
 - (iv) \sqrt{gR}
- 4. A satellite moves in an elliptic path with the earth at one focus. At the perigee (nearest point) its speed is v and its distance from the centre of the earth is r. If $\epsilon = 0.5$, what is its speed at the apogee (farthest point)?
 - (i) *v*
 - (ii) $\frac{v}{2}$
 - (iii) $\frac{v}{3}$
 - (iv) 2v
- 5. The greatest and least velocities of a certain planet in its orbit around the sun are 30.0 and 29.2 km/s. Find the eccentricity of the orbit.
 - (i) 0.013
 - (ii) 0.05
 - (iii) 0.49
 - (iv) 1.00
- 6. A binary star is formed when two stars bound by gravity move around a common centre of mass. Each component of a binary star has period of revolution about their centre of mass,

equal to 14.4 days and the velocity of each component of 220 km/s. Further, the orbit is nearly circular. Calculate the separation of the two components.

(i) $5.5 \times 10^{10} m$ (ii) $8.7 \times 10^{10} m$ (iii) $9.5 \times 10^{10} m$ (iv) $2.9 \times 10^{10} m$

- 7. If a satellite has its largest and smallest speeds given by v_{max} and v_{min} , respectively, and has time period equal to T and it moves on an elliptic path. Calculate the semi-major axis (a).
 - (i) $\frac{T}{2\pi} \sqrt{v_{max} v_{min}}$ (ii) $\frac{T}{2\pi} \sqrt[3]{v_{max} v_{min}}$ (iii) $\frac{2\pi}{T} \sqrt{v_{max} v_{min}}$ (iv) $\frac{2\pi}{T} \sqrt[3]{v_{max} v_{min}}$
- 8. A satellite of radius a revolves in a circular orbit about a planet of radius b with period T. If the shortest distance between their surfaces is c, the mass of the planet is
 - (i) $\frac{4\pi^2 (a+b-c)^3}{c^2}$ (i) $\frac{4\pi^{-}(a+b-c)^{3}}{GT^{2}}$ (ii) $\frac{4\pi^{2}(a+b+c)^{3}}{GT^{2}}$ (iii) $\frac{4\pi^{2}(a-b+c)^{3}}{GT^{2}}$ (iv) $\frac{4\pi^{2}(a+b+c)^{3}}{GT}$
- 9. Assuming that the earth is a sphere of radius 6400 km, with what velocity must a projectile be fired from the earths surface in order that its subsequent path be an ellipse with major axis equal to 80,000 km?
 - (i) $\sim 2 \text{ km/s}$ (ii) $\sim 5 \text{ km/s}$ (iii) $\sim 8 \text{ km/s}$ $(iv) \sim 10 \text{ km/s}$
- 10. A satellite has an elliptic orbit with the perigee (nearest point) of $r_p = 6570$ km and apogee (farthest point) at $r_a = 42,250$ km. The perigee velocitie was $v_p = 10.25$ km/s. Angular momentum of the satellite at apogee is approximately
 - (a) 55342.5 $Kg.m^2/sec$
 - (b) 87342.5 $Kq.m^2/sec$
 - (c) $67342.5 \ Kg.m^2/sec$
 - (d) 97342.5 $Kg.m^2/sec$

End