DEPARTMENT OF PHYSICS Indian Institute of Technology Kharagpur **Classical Mechanics-I** Assignment-3: Motion under a central force-2

- 1. For a motion under the central force $-\frac{k}{r^3}$. If it starts on the +ve X-axis at a distance a away from the origin and moves with speed v_0 in direction making an angle α with X-axis, the differential equation can be written as
 - (i) $\frac{d^2r}{dt^2} = -\frac{k ma^2 v_0^2 \sin^2 \alpha}{mr^3}$ (1) $\frac{dt^2}{dt^2} = \frac{mr^3}{mr^3}$ (ii) $\frac{d^2r}{dt^2} = \frac{k - ma^2 v_0^2 \sin^2 \alpha}{mr^3}$ (iii) $\frac{d^2r}{dt^2} = -\frac{k + ma^2 v_0^2 \sin^2 \alpha}{mr^3}$ (iv) $\frac{d^2r}{dt^2} = \frac{k + ma^2 v_0^2 \sin^2 \alpha}{mr^3}$
- 2. A particle is described by an attractive central force moves in an orbit given by $r = acos(\theta)$. the law of force is proportional to

 - $\begin{array}{c} \text{(i)} \ \frac{1}{r^2} \\ \text{(ii)} \ \frac{1}{r^3} \\ \text{(iii)} \ \frac{1}{r^4} \\ \text{(iv)} \ \frac{1}{r^5} \end{array}$
- 3. A particle describes an equiangular spiral $r = ae^{\theta}$ in such a manner that its acceleration has no radial component. Then
 - (i) angular velocity is zero
 - (ii) angular velocity is constant and magnitude of velocity is proportional to r
 - (iii) angular velocity is constant and magnitude of velocity is proportional to $\frac{1}{r}$
 - (iv) angular velocity and magnitude of velocity is proportional to r.
- 4. For attractive inverse square force field $f(R) = -\frac{k}{r^2}$, show that the velocity at any point of the for an hyperbolic path may be given as
 - (i) $v^2 = \frac{k}{m} [\frac{2}{r} \frac{1}{a}]$ (ii) $v^2 = \frac{k}{m} [\frac{2}{r} + \frac{1}{a}]$ (iii) $v^2 = \frac{m}{k} [\frac{2}{r} \frac{1}{a}]$ (iv) $v^2 = \frac{m}{k} [\frac{2}{r} + \frac{1}{a}]$
- 5. A small satellite revolves around a planet in an orbit of radius slightly greater than the radius of the planet, which is spherical. If the average density of the planet is ρ , the period of revolution of satellite.
 - (a) independent of R of the planet
 - (b) depends on R^2 of the planet
 - (c) depends on R^3 of the planet
 - (d) depends on R^4 of the planet

- 6. The central force necessary to make a particle describe the lemniscate $r^2 = a^2 \cos 2\theta$ is (i) proportional to r^7
 - (ii) inversely proportional to r
 - (iii) proportional to r
 - (iv) inversely proportional to r^7
- 7. If a particle describes a elliptic orbit under the influence of an attractive central force $(=-\frac{k}{r^2})$, then the period of revolution of the particle is

(i)
$$2\pi a^{3/2} \sqrt{\frac{m}{k}}$$

(ii) $2\pi a^{3/2} \sqrt{\frac{k}{m}}$
(iii) $\pi a^{3/2} \sqrt{\frac{m}{k}}$

- (iv) $\pi a^{3/2} \sqrt{\frac{k}{m}}$
- 8. Find the law of force to the pole when the orbit described by the cardioid $r = a(1 \cos \theta)$ (i) \propto to r^{-1}
 - (ii) \propto to r^{-2}
 - (iii) \propto to r^{-3}
 - (iv) \propto to r^{-4}
- 9. Which one is the correct expression of areal velocity
 - (i) $\frac{1}{2}r^2\dot{\theta}$
 - (ii) $r^2 \dot{\theta}$

 - (iii) $\frac{1}{2}r^2\dot{\theta}^2$ (iv) $\frac{1}{2}\dot{r}^2\dot{\theta}$
- 10. On the earth surface q can be expressed as
 - (i) $\frac{\sqrt{GM}}{\frac{R}{R}}$ (ii) $\frac{GM}{\frac{R}{R}}$ (iii) $\frac{GM}{\frac{R^2}{R^2}}$

 - (iv) $\sqrt{\frac{GM}{R}}$

End