DEPARTMENT OF PHYSICS
 Indian Institute of Technology Kharagpur
 Classical Mechanics-I
 Course: PH20007
 Assignment-10: Assignment-10 (Lagrangian-2)

1. A particle is falling under the influence of gravity when frictional forces obtainable from a dissipative function $\frac{1}{2} k v^{2}$ are present. The maximum possible velocity for fall from rest is
(a) $\frac{m g}{2 k}$
(b) $\frac{m g}{5 k}$
(c) $\frac{m g}{k}$
(d) $\frac{2 m g}{k}$
2. For Lagrangian (L) of any system, which of the following is true
(a) $L=L\left(p_{k}, \dot{q_{k}}, t\right)$
(b) $L=L\left(q_{k}, \dot{q_{k}}, t\right)$
(c) $L=L\left(p_{k}, \dot{p_{k}}, t\right)$
(d) $L=L\left(q_{k}, \dot{p_{k}}, t\right)$
3. A particle of massm moves in a plane in the field of force given by $\vec{F}=-k r \cos \phi \hat{r}$ where k is a constant and \hat{r} is the radial unit vector. which of the following is true Lagrange's equation(s)
(a) $m \ddot{r}-m r \dot{\phi}^{2}+k r \cos \phi=0$ and $m r^{2} \dot{\phi}=0$
(b) $m \ddot{r}-m r \dot{\phi}^{2}+k r \cos \phi=0$ and $m r^{2} \dot{\phi}=$ constant
(c) $m \ddot{r}-m r \dot{\phi}^{2}+k r \cos \phi=$ constant and $m r^{2} \dot{\phi}=0$
(d) $m \ddot{r}-m r \dot{\phi}^{2}+k r \cos \phi=$ constant and $m r^{2} \dot{\phi}=$ constant
4. Point of suspension of a simple pendulum of mass m_{2} is attached to a mass m_{1} that is moving along x - axis with uniform velocity v_{0}.
The Lagrangian of the system is given by

(a) $L=\frac{1}{2} m_{1} v_{0}^{2}+\frac{1}{2} m_{2}\left(v_{0}+l \cos \theta \dot{\theta}\right)^{2}+m g l \cos \theta$
(b) $L=\frac{1}{2} m_{2} v_{0}^{2}+\frac{1}{2} m_{1}\left(v_{0}+l \cos \theta \dot{\theta}\right)^{2}+m g l \cos \theta$
(c) $L=\frac{1}{2} m_{1} v_{0}^{2}+\frac{1}{2} m_{2}\left(v_{0}+l \cos \theta \dot{\theta}\right)^{2}-m g l \sin \theta$
(a) $L=\frac{1}{2} m_{1} v_{0}^{2}+\frac{1}{2} m_{2}\left(v_{0}+l \sin \theta \dot{\theta}\right)^{2}+m g l \cos \theta$
5. An electric dipole with opposite charges of masses m_{1} and m_{2} separated by a distance l is placed in an external electric field. θ is the instantaneous orientation of the dipole w.r.t. \vec{E}.

The lagrangian of the dipole is (p is the magnitude of dipole moment)
(i) $L=\frac{l^{2}}{2}\left(m_{1}+m_{2}\right) \dot{\theta}^{2}+p E \cos \theta$
(ii) $L=\frac{l^{2}}{4}\left(m_{1}+m_{2}\right) \dot{\theta}^{2}+p E \cos \theta$
(iii) $L=\frac{l^{2}}{6}\left(m_{1}+m_{2}\right) \dot{\theta}^{2}+p E \cos \theta$
(iv) $L=\frac{l^{2}}{8}\left(m_{1}+m_{2}\right) \dot{\theta}^{2}+p E \cos \theta$
6. Lagrange's equation of motion of an electrical circuit comprising an inductance L and capacitance C (the condenser is charged to q coulombs and the current flowing in the circuit is i amperes) is
(i) $\ddot{q}+\frac{q}{L C}=0$
(ii) $\ddot{q}+\frac{L q}{C}=0$
(iii) $\ddot{q}+\frac{C q}{L}=0$
(iv) $\ddot{q}+\frac{q^{2}}{L C}=0$
7. For a compound pendulum Lagrangian can be written as (θ is the instantaneous angle w.r.t. vertical axis and I_{0} is the M.I. about the axis of rotation)
(a) $L=\frac{1}{2} I_{0}^{2} \dot{\theta}^{2}-m g h \cos \theta$
(b) $L=\frac{1}{2} I_{0} \dot{\theta}^{2}-m g h \cos \theta$
(c) $L=\frac{1}{2} I_{0} \dot{\theta}^{2}-m g h(1+\cos \theta)$
(d) $L=\frac{1}{2} I_{0} \dot{\theta}^{2}-m g h \sin \theta$
8. A bead slides without friction on a wire which is rotating with angular velocity ω in the force free space. The radial velocity is
(a) $\sqrt{\omega^{2} r}$
(b) $\sqrt{\omega^{2} r++ \text { constant }}$
(c) $\sqrt{\omega^{2} r^{2}}$
(d) $\sqrt{\text { constant }-\omega^{2} r^{2}}$
9. A spring of mass M and spring constant k, is hung vertically (along y-axis). Another mass, m, is suspended from it. The K.E. of the system
(a) $\frac{1}{2} M \dot{y}^{2}$
(b) $\frac{1}{2} m \dot{y}^{2}$
(c) $\frac{1}{6} M \dot{y}^{2}$
(d) $\frac{1}{6} M \dot{y}^{2}+\frac{1}{2} m \dot{y}^{2}$
10. A spring of mass M and spring constant k, is hung vertically. Another mass, m, is suspended from it. The system will execute simple harmonic motion with a period of
(a) $2 \pi \sqrt{\frac{M+m}{k}}$
(b) $2 \pi \sqrt{\frac{M+\frac{m}{3}}{k}}$
(c) $2 \pi \sqrt{\frac{\frac{M}{3}+m}{k}}$
(d) $2 \pi \sqrt{\frac{M-m}{k}}$

