Unit 9 - Week 7

How to access the portal?

Course outline

Week-0

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Flux

Lecture Slides

Week 8

Week 9

Week 10

Week 11

Week 12

Live Session

Text Transcripts

Quiz : Assignment 7

Assignment 7 Solution

Feedback For Week 7

Lecture 25: Energy Transfers:

Lecture 26: Energy Transfers: Fluid Simulations - Dealiasing

Theory: Energy Spectrum and

Fluid Simulations using

Lecture 27: Kolmogorov's

Lecture 28: Kolmogorov's Theory: Insights and its Verification with Direct Numerical Simulation

Spectral Method

NPTEL » Physics of Turbulence

	Due on 2019-09-18, 23:59
1) In a juice making machine, a fruit-flavour is mixed in 1 kg of water ($v = 10^{-6} \ m^2/s$). The machine consupproximate size of the smallest eddies in the flow induced by the machine?	umes 300 W power. What will be the
○1 mm	
○ 0.01 mm ○ 10 mm	
cannot estimate with the given information	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
0.01 mm 2) Approximate values of Kolmogorov time (τ_{η}) and velocity (u_{η}) scales for the problem 1 are :	
$ au_\eta = 0.0001$ s and $u_\eta = 0.1$ m/s	
$ au_\eta = 0.0001$ s and $u_\eta = 0.1$ mm/s	
$ au_\eta = 0.1$ s and $u_\eta = 0.01$ m/s	
$ au_\eta = 1$ s and $u_\eta = 1$ m/s No, the answer is incorrect.	
Score: 0 Accepted Answers:	
$ au_\eta = 0.0001$ s and $u_\eta = 0.1$ m/s	
3) How many grid points N (approximately) are required (in all three directions) to perform the Direct Number Re = 2.2×10^5 ?	erical Simulation of a turbulent flow with
$N = 10^5$	
$ \bigcirc \\ N = 10^4 $	
$N = 10^3$	
$N = 10^2$	
No, the answer is incorrect. Score: 0	
Accepted Answers: $N = 10^4$	
IV = 10	
 Choose a property of turbulence which is not due to Kolmogorov's theory of turbulence. 	
C	
In the inertial range energy spectrum scales $E(k) \sim k^{-5/3}$	
Bottleneck effect in the energy spectrum	
Energy flux is constant in the inertial range	
Smallest length scale in the turbulence is $\eta \sim (v^3/\epsilon)^{1/4}$	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
Bottleneck effect in the energy spectrum	
5) For a fully-developed turbulent flow which is forced at large scales, the energy dissipation rate (ϵ) can be	e estimated as:
$\epsilon \sim U^3/L$	
$\epsilon \sim U^2/L$	
$ \begin{array}{c} \circ \\ \epsilon \sim U^2/L \\ \circ \\ \epsilon \sim \nu(U^2/L^2) \end{array} $	
$\epsilon \sim \nu(U^2/L^2)$ None of these	
$\epsilon \sim \nu(U^2/L^2)$ None of these No, the answer is incorrect. Score: 0 Accepted Answers:	
$\epsilon \sim \nu(U^2/L^2)$ None of these No, the answer is incorrect. Score: 0 Accepted Answers: $\epsilon \sim U^3/L$	
$\epsilon \sim \nu(U^2/L^2)$ None of these No, the answer is incorrect. Score: 0 Accepted Answers: $\epsilon \sim U^3/L$ 6) In a fully-developed three-dimensional homogeneous isotropic turbulence, energy transfer is:	
$\epsilon \sim \nu(U^2/L^2)$ None of these No, the answer is incorrect. Score: 0 Accepted Answers: $\epsilon \sim U^3/L$	
None of these No, the answer is incorrect. Score: 0 Accepted Answers: $\epsilon \sim U^3/L$ 6) In a fully-developed three-dimensional homogeneous isotropic turbulence, energy transfer is: from large to small scales (forward cascade) and non-local from small to large scales (inverse cascade) and local can be both forward and inverse cascade, and local and non-local	
No, the answer is incorrect. Score: 0 Accepted Answers: $\epsilon \sim U^3/L$ 6) In a fully-developed three-dimensional homogeneous isotropic turbulence, energy transfer is: from large to small scales (forward cascade) and non-local from small to large scales (inverse cascde) and local can be both forward and inverse cascade, and local and non-local always forward and local	
None of these No, the answer is incorrect. Score: 0 Accepted Answers: $\epsilon \sim U^3/L$ 6) In a fully-developed three-dimensional homogeneous isotropic turbulence, energy transfer is: from large to small scales (forward cascade) and non-local from small to large scales (inverse cascade) and local can be both forward and inverse cascade, and local and non-local	

Energy is transferred from large to small scales. No energy transfer takes place among various modes.

It is an equilibrium phenomenon.

No, the answer is incorrect. Score: 0 Accepted Answers:

Energy is transferred from large to small scales.

Score: 0

Accepted Answers:

8) Pao's conjecture $E(k)/\Pi(k) = K_{Ko}\epsilon^{-1/3}k^{-5/3}$ is useful:

in explaining the bottleneck effect in the energy spectrum in explaining the local nature of energy transfer in a fully developed 3D homogeneous isotropic turbulence None of these No, the answer is incorrect.

in developing a model for the energy spectrum in both inertial and the dissipation range

in developing a model for the energy spectrum in both inertial and the dissipation range

Energy of every mode are equal, that leads to energy spectrum scaling $E(k) \sim k^2$.

at very high Reynolds number $\epsilon \sim (u^3/\ell)$. What will be the decay law for this type of turbulence?

9) Consider a decaying turbulence with a constraint: $u^2 \ell^3$ =constant, where ℓ is the integral length scale. Also note that for a fully developed turbulence **1** point

1 point

1 point

 $u^2 \sim t^{-1}$ decay law for turbulence depends on viscosity No, the answer is incorrect. Score: 0 Accepted Answers: $u^2 \sim t^{-6/5}$

Energy spectrum scaling is very close to exponential nature $E(k) \sim \exp(-bk)$, where b is a constant.

10) Which one of the following statements is correct for a laminar flow (low Reynolds number flows)?

Energy spectrum scales $E(k) \sim k^2$. Energy flux is constant. Energy flux is zero.

Score: 0 Accepted Answers: Energy spectrum scaling is very close to exponential nature $E(k) \sim \exp(-bk)$, where b is a constant.

No, the answer is incorrect.