NPTEL » Physics of Turbulence

Unit 3 - Week 1

How to access the portal?

Lecture 1: The turbulence

hydrodynamics - Governing

hydrodynamics - Vorticity

hydrodynamics - Example

hydrodynamics - Conservation

Course outline

Week-0

Week 1

problem

equations

Lecture 2: Basic

Lecture 3: Basic

Lecture 4: Basic

Lecture 5: Basic

problems

Lecture Slides

O Quiz: Assignment 1

Assignment 1 solution

Feedback For Week 1

laws

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Live Session

Text Transcripts

0

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	Due or
 Consider a room inside which a person is standing 3m away from a room heater. Assume that the thermal diff d the mean velocity of the air is 1 m/s. How fast does the heat reach the person? [Note: Consider nonlinear effect 	-
0.1 s	
○3 s	
○ 6000 s	
○900000 s	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
3 s	
) Estimate the time for Q.1 using only thermal diffusion.	
○ 0.1 s	
○3 s	
6000 s	
900000 s	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
lncompressibility condition is given by	
$\frac{D\rho}{Dt} = 0$	
$D_t = 0$	
$\frac{\partial \rho}{\partial t} = 0$	
$\frac{\partial}{\partial t} = 0$	
$\nabla \cdot \mathbf{u} = 0$	
both 1st and 3rd options.	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
both 1st and 3rd options.	
Which of the following two-dimensional flows are incompressible?	
$\sin 2x \cos 3y\hat{x} + \cos 2x \sin 3y\hat{y}$	
$\sin 2x \cos 3y \hat{x} + \cos 2x \sin 3y \hat{y}$	
$x^2y\hat{x} + (2x^3 - xy^2)\hat{y}$	
0	
$4\cos 3x\hat{x} + 3\sin 2x\hat{y}$	
None of the above	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: $x^2y\hat{x} + (2x^3 - xy^2)\hat{y}$	
5) The material derivative of vorticity is zero for	
three-dimensional incompressible, inviscid flows	
two-dimensional incompressible, inviscid flows all inviscid flows	
all inviscid flows	

