ourses » Introduction to Solid St	tate Physics Announcements Course Ask a Question Prog	gress FAQ
Jnit 8 - Two Atom Iomentum	s per Primitive Basis, Quantization of Elastic Waves, Phonon	2 2
Register for Certification exam		Ę
Course outline	ASSIGNMENT 7 The due date for submitting this assignment has passed. Due on 2019-03-	20, 23:59 IST
How to access the portal	As per our records you have not submitted this assignment.	
Introduction to Drude's free electron theory of metals, electrical conductivity Ohm's	Consider a one dimensional chain of atoms of mass <i>m</i> connected with two kinds	of springs
law and Hall effect	figure) with spring constants C_1 (shown by red line) and C_2 (shown with blue line). Denote
Introduction to Sommerfeld's model	displacement of atom on s th sight with spring with constant C_1 to the left as $u_{ m s}$ a	nd of aton
Specific heat of an electron gas and the behaviour of thermal conductivity of a solid and relationship with electrical conductivity	spring with constant C_2 as v_s as shown in the figure.	
Introduction to crystal structure and their classifications	$\xrightarrow{u_s} \xrightarrow{v_s}$	
Direct Imaging of Atomic Structure, Diffraction of Waves by Crystals, Reciprocal lattice, Brillouin Zones	The equation of motion for those atoms is then	
Vibrations of Crystals with Monatomic Basis, Acoustic modes	The equation of motion for these atoms is then	
Two Atoms per Primitive Basis, Quantization of Elastic Waves, Phonon Momentum	$m\ddot{u}_{s} = C_{1}(v_{s} - u_{s}) - C_{1}(u_{s} - v_{s-1}) \& m\ddot{v}_{s} = C_{2}(u_{s+1} - v_{s}) - C_{2}(v_{s} - u_{s})$	
Lattice with two atom basis: Optical Phonons	$m\ddot{u}_{s} = C_{1}(v_{s} - u_{s}) - C_{2}(u_{s} - v_{s-1})$ & $m\ddot{v}_{s} = C_{2}(u_{s+1} - v_{s}) - C_{1}(v_{s} - u_{s})$	
Displacement of the atoms for the acoustic and optical Phonons	•	
Density of states of phonons	$m\ddot{u}_{s} = C_{2}(v_{s} - u_{s}) - C_{1}(u_{s} - v_{s-1}) \& m\ddot{v}_{s} = C_{1}(u_{s+1} - v_{s}) - C_{2}(v_{s} - u_{s})$	
states of Phonons: The Einstein's and the Debye's Models	•	
Average energy of Phonons at Temperature T	$m\ddot{u}_s = C_2(v_s - u_s) + C_1(u_s - v_{s-1})$ & $m\ddot{v}_s = C_1(u_{s+1} - v_s) + C_2(v_s - u_s)$	
Debye's Model of specific heat of crystals	•	
Anharmonic effects in crystals: thermal expansion and Umkclapp processes	No, the answer is incorrect. Score: 0	
Quiz : ASSIGNMENT 7	Accepted Answers:	
New Introduction to Solid State Physics : Feedback For Week 7	$m\ddot{u}_{s} = C_{2}(v_{s} - u_{s}) - C_{1}(u_{s} - v_{s-1}) \& m\ddot{v}_{s} = C_{1}(u_{s+1} - v_{s}) - C_{2}(v_{s} - u_{s})$	
Assignment 7 solutions		1 po
Bloch's theorem for wavefunction of a particle in a periodic potential, nearly free electron model, origin of energy band gaps, discussion of Bloch wavefunction	For question 1, if $C_1 < C_2$, frequency of the acoustic and optical modes at $ka = \pi$ are, respectively	1 pc
Band theory of metals, insulators and semiconductors, Kronig- Penney model, tight binding method of calculating bands, and semi-classical dynamics of a particle in a band	$\sqrt{\frac{C_1}{m}} and \sqrt{\frac{C_2}{m}}$	
Introductory Comiconductor	•	

$$\begin{split} & \left(\frac{\Gamma_{n}}{m} \ \text{and} \ \int_{m}^{2\Gamma_{n}} \right) \\ & \left(\frac{\Gamma_{n} - \Gamma_{n}}{m} \ \text{and} \ \int_{m}^{0} \left(\frac{\Gamma_{n} + \Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n} - \Gamma_{n}}{m} \ \text{and} \ \int_{m}^{0} \left(\frac{\Gamma_{n} + \Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n} - \Gamma_{n}}{m} \ \text{and} \ \int_{m}^{0} \left(\frac{\Gamma_{n} + \Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n} - \Gamma_{n}}{m} \ \text{and} \ \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \text{and} \ \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \text{and} \ \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \text{and} \ \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \text{and} \ \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \text{and} \ \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \ \int_{m}^{0} \int_{m}^{0} \left(\frac{\Gamma_{n}}{m} - \frac{\Gamma_{n}}{m} \right) \\ & \left(\frac{\Gamma_{n}}{m} \right)$$

$9RT\left(\frac{T}{\theta_{D}}\right)^{3}\int_{0}^{\theta_{D}/T}\frac{x^{3}}{e^{x}-1}dx$	
$\langle \sigma_D \rangle J_0 = e^{-1}$	
⁵⁾ KCl has Debye temperature of 230K. Its specific heat at 5K is	1 pct
3.8×10^{-2} Jmol ⁻¹ K ⁻¹ , its specific heat at 2K will be close to	
2.4 x 10 ⁻³ Jmol ⁻¹ K ⁻¹	R
0.5 x 10 ⁻³ Jmol ⁻¹ K ⁻¹	
5.7 x 10 ⁻³ Jmol ⁻¹ K ⁻¹	
8.7 x 10 ⁻³ Jmol ⁻¹ K ⁻¹	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
2.4 x 10 ⁻³ Jmol ⁻¹ K ⁻¹	
⁶⁾ NaCl has the same crystal structure as KCl and Debye Temperature 310K. Lattice specific heat of NaCl at 5K will be	1 point
2.45 x 10 ⁻² Jmol ⁻¹ K ⁻¹	
$6.77 \times 10^{-2} \text{ Jmol}^{-1} \text{K}^{-1}$	
9.07 x 10 ⁻² Jmol ⁻¹ K ⁻¹	
1.55 x 10 ⁻² Jmol ⁻¹ K ⁻¹	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
1.55 x 10 ⁻² Jmol ⁻¹ K ⁻¹	
⁷⁾ The following data for germanium is given:	1 point
Thermal conductivity: 80 Wm ⁻¹ K ⁻¹ ; Debye Temperature	
θ_D =360K ; atomic weight = 72.6 and density = 5500kgm ⁻³	
Mean free path of phonons in germanium at 300K using this	
data will be(keep in mind that in $K = \frac{1}{3}Cvl, C$ is the specific	
heat per unit volume):	
3mm	
 30μm 	
30nm	
 30Å No, the answer is incorrect. 	
Score: 0 Accepted Answers:	
30nm	
⁸⁾ Debye temperature of diamond is 2000K. At 4K and at 50K its thermal conductivity is K_4 and K_{50} , respectively. Then	1 point
Thermal conductivity at both temperatures is determined by	
scattering by defects, sample boundary and $\frac{K_4}{K_{50}} = 5 \times 10^{-4}$	
•	

9)

2

2

R

2

2

1 point

Thermal conductivity at 4K is determined by scattering by defects, sample boundary but at 50K it is determined by Umklapp processes.

Umklapp processes. Umklapp processes are important at both 4K and 50K Thermal conductivity at both temperature is determined by scattering by defects, sample boundary but nothing definite can be said about their relation No, the answer is incorrect. Score: 0 Accepted Answers: Thermal conductivity at both temperatures is determined by scattering by defects, sample boundary and $\frac{\kappa_4}{\kappa_{50}} = 5 \times 10^{-4}$

By using Debye approximation in a one-dimensional monoatomic crystal lattice with interatomic space speed of sound v, the Debye temperature θ_D is

$$\theta_{D} = \frac{hv}{k_{B}a}$$

$$\theta_{D} = \frac{3hv}{2k_{B}a^{2}}$$

$$\theta_{D} = \frac{hv}{2k_{B}a^{2}}$$

$$\theta_{D} = \frac{hv}{2k_{B}a}$$
No, the answer is incorrect.
Score 0

$$P = \frac{hv}{2k_{B}a}$$
10) For the system defined in above question the specific heat C_{v} at temperature T is

$$C_{v} = \frac{3\pi^{2}k_{B}T}{2a\theta_{D}}$$

$$C_{v} = \frac{\pi^{2}k_{B}T}{3a\theta_{D}}$$

$$C_{v} = \frac{\pi^{2}k_{B}T}{3a\theta_{D}}$$

$$C_{v} = \frac{\pi^{2}k_{B}T}{3a\theta_{D}}$$
No, the answer is incorrect.
Score 0
Note the support answers:

$$C_{v} = \frac{\pi^{2}k_{B}T}{3a\theta_{D}}$$
No, the answer is incorrect.
Score 0
No previous Page
End

R

8