ourses » Introduction to So	lid State Physics	Announcements	Course	Ask a Question	Progress	FAQ
Init 6 - Direct I	maging of Atomic Structur	o Diffract	tion of	Wayas h		
	ce, Brillouin Zones	c, Diniaci		vvaves n	y Crys	lais,
Register for Certification exam	Assignment 5					
Course outline	The due date for submitting this assignment has pas As per our records you have not submitted this assi			Due on 20)19-03-06, 23	:59 IST
How to access the portal	1) The intensity of X-rays scattered to a point on the sca	reen depends				1 po
Introduction to Drude's free electron theory of metals, electrical conductivity Ohm's law and Hall effect	 only on the electronic density of the scattering cr only on the intensity of the X-ray source on the Fourier transform of the density of the sca only on the wavelength of incoming X-ray 	-				
Introduction to Sommerfeld's model	No, the answer is incorrect.					
Specific heat of an electron gas and the behaviour of thermal conductivity of a solid and relationship with electrical conductivity	Score: 0 Accepted Answers: on the Fourier transform of the density of the scattering 2) The X-rays emitted by a source in the Roentgen tube characteristics X-rays are then emitted due to de-excitation of inner shell electrons in the	e are produced by hitti		-		1 pc
Introduction to crystal structure and their classifications	 due to electrons de-accelerating in the target due to a sudden stopping of the accelerating electron 					.,
Direct Imaging of Atomic Structure, Diffraction of Waves by Crystals, Reciprocal lattice, Brillouin Zones	 due to a special property possessed by only a fe by electrons No, the answer is incorrect. Score: 0 	w specific type of met	als that they c	an spontaneously em	it X-rays when bo	ombarde
Scattering of X rays from crystals Part 1	Accepted Answers: due to de-excitation of inner shell electrons in the atoms atoms in the X-ray tube	excited by the collision	on of electrons	s with the target		
Scattering of X rays from crystals Part 2	3) The reciprocal lattice vectors of a simple cub	e with lattice const	tant <i>a</i> is			1 pc
Reciprocal lattice vectors Part-1	$a\hat{x}, a\hat{y}, a\hat{z}$					
 Reciprocal lattice vectors Part-2 Reciprocal lattice vectors and Laue's condition for diffraction of waves in crystals Part 1 	$\frac{2\pi}{a}\hat{x}, \frac{2\pi}{a}\hat{y}, \frac{2\pi}{a}\hat{z}$ $\frac{\pi}{a}\hat{x}, \frac{\pi}{a}\hat{y}, \frac{\pi}{a}\hat{z}$ $\frac{a}{2\pi}\hat{x}, \frac{a}{2\pi}\hat{y}, \frac{a}{2\pi}\hat{z}$					
Reciprocal lattice vectors and Laue's condition for diffraction of waves in crystals Part 2	No, the answer is incorrect. Score: 0 Accepted Answers: $\frac{2\pi}{R}\hat{x}, \frac{2\pi}{a}\hat{y}, \frac{2\pi}{a}\hat{z}$					
Reciprocal lattice vectors, Laue's condition and Bragg's law for diffraction of waves by a crystal	4) For the FCC lattice with lattice constant a , th $\frac{a}{2}(\hat{x} + \hat{y}), \frac{a}{2}(\hat{y} + \hat{z}), \frac{a}{2}(\hat{x} + \hat{z})$		itive lattice	vectors are		1 pc
Quiz : Assignment 5 Introduction to Solid State Physics : Feedback For Week 5 Assignment 5 solution	$\frac{a}{2}\hat{x}, \frac{a}{2}\hat{y}, \frac{a}{2}\hat{z}$ $\frac{a}{2}(-\hat{x}+\hat{y}+\hat{z}), \frac{a}{2}(\hat{x}+\hat{y}-\hat{z})$		⊦ <i>î</i>)			
	$\frac{a}{2}(\hat{x}+\hat{y}), \frac{a}{2}(\hat{y}+\hat{z})$					

Introduction to Solid State Physics - - Unit 6 - Di...

	5) For the primitive lattice vectors of FCC in the previous problem, the reciprocal lattice	1 point
Bloch's theorem for wavefunction of a	vectors are	1 point
particle in a periodic potential, nearly free electron model, origin of	$\frac{2\pi}{a}(\hat{x}+\hat{y}+\hat{z}), \ \frac{2\pi}{a}(\hat{x}+\hat{y}-\hat{z}), \ \frac{2\pi}{a}(\hat{x}-\hat{y}+\hat{z})$	
energy band gaps, discussion of Bloch wavefunction	$\frac{2\pi}{a}(\hat{x}+\hat{y}-\hat{z}), \frac{2\pi}{a}(\hat{x}-\hat{y}+\hat{z}), \frac{2\pi}{a}(-\hat{x}+\hat{y}+\hat{z})$	
Band theory of metals,	$\frac{2\pi}{a}(\hat{x}+\hat{y}+\hat{z}), \ \frac{2\pi}{a}(-\hat{x}+\hat{y}+\hat{z}), \ \frac{2\pi}{a}(\hat{x}-\hat{y}+\hat{z})$	2
insulators and semiconductors, Kronig-	$\frac{\frac{2\pi}{2\pi}}{a}(\hat{x}+\hat{y}+\hat{z}), \frac{2\pi}{a}(\hat{x}-\hat{y}+\hat{z}), \frac{2\pi}{a}(\hat{x}+\hat{y}-\hat{z})$	R
Penney model, tight binding method of calculating bands, and	No, the answer is incorrect.	
semi-classical dynamics of a particle in a band	Score: 0	
Introductory	Accepted Answers: $\frac{2\pi}{a}(\hat{x}+\hat{y}-\hat{z}), \frac{2\pi}{a}(\hat{x}-\hat{y}+\hat{z}), \frac{2\pi}{a}(-\hat{x}+\hat{y}+\hat{z})$	R.
Semiconductor Physics Magnetism in materials	a a a a a a a a a a a a a a a a a a a	1 point
Superconductivity	a^3	- pom
Solutions of	$\frac{a^3}{a^3}$	
Assignments	$ \begin{array}{c} 2 \\ a^3 \end{array} $	
	<u>4</u>	
	$\frac{a^3}{8}$	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	$\frac{a^3}{4}$	
	 The volume of the reciprocal lattice of FCC of question (6) is 	1 point
	$4(2\pi)^3$	
	a^{3} $(2\pi)^{3}$	
	$\bigcirc \frac{(2\pi)^2}{2a^3}$	
	$\frac{(2\pi)^3}{4a^3}$	
	$\begin{array}{c} 4a^{3} \\ (2\pi)^{3} \end{array}$	
	$\overline{8a^3}$	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	$\frac{4(2\pi)^3}{a^3}$	
	8) In a cubic lattice, the lattice planes (111) (Miller indices, $h = 1$, $k = 1$, and $l = 1$) are perpendicular to the reciprocal lattice vector	1 point
	$\frac{2\pi}{a}(\hat{x}+\hat{y}+\hat{z})$	
	•	
	$\frac{2\pi}{a}(\hat{x}+\hat{y})$	
	$\frac{2\pi}{a}(\hat{y}+\hat{z})$	
	$\frac{2\pi}{a}(\hat{x}+\hat{z})$	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	$\frac{2\pi}{a}(\hat{x}+\hat{y}+\hat{z})$	
	9) The spacing between (hkl) lattice planes in a cubic lattice d_{hkl} is	1 point

$$\frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$\frac{\sqrt{h^2 + k^2 + l^2}}{a}$$

$$\frac{2\pi}{a\sqrt{h^2 + k^2 + l^2}}$$

$$\frac{2\pi}{a\sqrt{h^2 + k^2 + l^2}}$$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$$\frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
10) An x-ray of wavelength 1.5 Å is incident on the (001) plane of a cubic lattice. The first maximum is observed at
1 point
an angle of $\theta = 42.2^{\circ}$ then the lattice spacing is

0.55 Å 0.33 Å 1.11 Å 2.11 Å No, the answer is incorrect. Score: 0 Accepted Answers:

1.11 Å

11)

1 point

The BCC lattice structure can be considered as a cubic unit cell with basis atoms at (0,0,0) and $(\frac{a}{2}, \frac{a}{2}, \frac{a}{2})$ the value of a quantity $S = \sum_{i} e^{i.\vec{K}.\vec{r_i}}$ when $\vec{r_i}$ is the location of the basis atoms (where $\vec{K} = \vec{k}' - \vec{k}$ is the sci wave vector) is

 $1 + e^{i\vec{K}\frac{a}{2}(\hat{x}+\hat{y}+\hat{z})}$ $1 + e^{-i\vec{K}\frac{a}{2}(\hat{x}+\hat{y}+\hat{z})}$ $1 - e^{i\vec{K}\frac{a}{2}(\hat{x}+\hat{y}+\hat{z})}$ $1 + e^{i2\vec{K}\frac{a}{2}(\hat{x}+\hat{y}+\hat{z})}$ No, the answer is incorrect. Score: 0 Accepted Answers: $1 + e^{i\vec{K}\frac{a}{2}(\hat{x}+\hat{y}+\hat{z})}$

12) The quantity S defined in question (11) is called the structure factor. Along with the Laue's condition, the quantity S determines the **1** point final intensity of the diffracted x-rays. (If S = 0, even if the Laue's condition is satisfied the diffracted intensity will be minimum. And S \neq 0 with Laue's condition for maxima will give maximum intensity.) For the question (11) what is the condition on the Miller indices (*hkl*) for observing a maximum

h + k + l is odd	
 h + k + I is even h = 0 and k + I is any value h, k and I has to be only zero 	
No, the answer is incorrect. Score: 0 Accepted Answers: h + k + l is even	
Previous Page	End

- - R
- ß
 - R