

Solutions of Assignments

Sketch the behaviour of specific heat of a pure 3D metal as a function of temperature

Electrons are drifting in a metal with an average velocity v_0 when an electric field \vec{E} is present. At t = 0 the electric field is switched off. Then the time dependence of the average velocity of the electron as a function of time will be

 $v = v_0 e^{-t/\tau}$ $_{\odot} v = v_0 e^{t/\tau}$ $_{\odot} v = v_{0}e^{-2t/\tau}$

No, the answer is incorrect.

Accepted Answers: $v = v_0 e^{-t/\tau}$

Amongst the materials given below which one can have both -ve and +ve Hall coefficients:

- Metal
- Doped semiconductor
- Insulator

1 point

Intrinsic semiconductor
No, the answer is incorrect. Score: 0
Accepted Answers: Doped semiconductor
6) 1 point
Aluminium has scattering time $\tau = 10^{-15}$ sec. Within Drude model if at time \underline{t} the
momentum is $\vec{P}(t)$ then what will be the momentum of the electron after time
interval of $3*10^{-16}$ sec from 't' (consider $\vec{E} = 0$ and $\vec{B} = 0$)
$0.7 \vec{P}(t)$
$1.3 \vec{P}(t)$
$5 \vec{P}(t)$
No, the answer is incorrect. Score: 0
Accepted Answers: $0.7 \vec{P}(t)$
7) 1 point
A metal is subjected to an electric field $\vec{E} = \vec{E}_0 e^{-i\omega t}$. Write the steady state velocity of the electron in the metal (assume velocity has the same time dependence as the applied electric field and take the collision time τ)
$v = -\frac{eE_0e^{-i\omega t}}{m(i\omega + \frac{1}{\tau})}$ $v = \frac{eE_0e^{-i\omega t}}{m(-i\omega + \frac{1}{\tau})}$
$v = -\frac{eE_0e^{-i\omega t}}{m(-i\omega + \frac{1}{t})}$
$v = -rac{eE_0e^{-i\omega t}}{m(-i\omega-rac{1}{ au})}$
No, the answer is incorrect. Score: 0
Accepted Answers:
$v = -\frac{eE_0e^{-i\omega t}}{m(-i\omega + \frac{1}{\tau})}$
Using the equation derived above the frequency dependent electrical conductivity (σ) of the metal is –
$\frac{\sigma_0}{1-i\omega au}$
$\frac{\sigma_0}{1+i\omega\tau}$
$\frac{1}{1+i\omega au}$
No, the answer is incorrect. Score: 0
Accepted Answers:
$1-i\omega au$ 9) 1 point
The mobility of electron μ_e is an important quantity in a solid. It is defined as $\vec{v} = -\mu_e \vec{E}$, where
velocity of electron and \vec{E} is electric field applied to the metal. Using Drude theory the expression.
is,
$\stackrel{e au}{igoplus}_{m_e}$

Mean free path of an electron l_e of a one dimensional wire made of copper at temperature T = 3 of the order of (use $\tau = 4 \times 10^{-14} sec$),

24 Å

100 Å

1 A

1000 Å

No, the answer is incorrect.

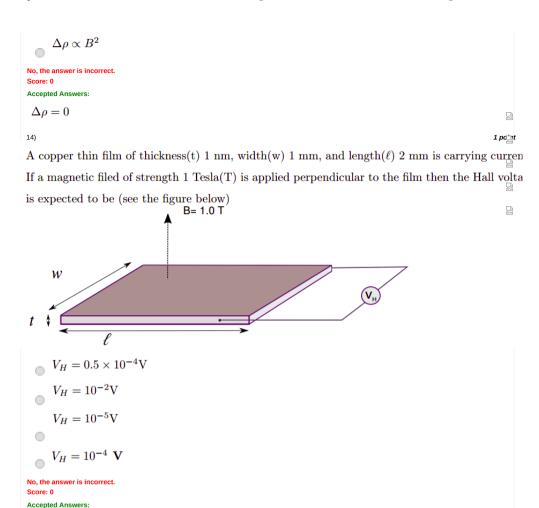
Score: 0

Accepted Answers:
24 Å

If density of copper is $n=8.45\times 10^{28}m^{-3}$ then the Hall coefficient of copper is expected to be

 $-0.074 \times 10^{-9} \frac{m^3}{c}$ $0.074 \times 10^{-9} \frac{m^3}{c}$ $-0.74 \times 10^{-9} \frac{m^3}{c}$ $0.0074 \times 10^{-9} \frac{m^3}{c}$ No, the answer is incorrect. Score: 0
Accepted Answers: $-0.074 \times 10^{-9} \frac{m^3}{c}$

 R_H^s and R_H^m are magnitudes of Hall coefficients of an intrinsic semiconductor and a metal, respectively which one of the following is true


 $R_H^s > R_H^m$ $R_H^s < R_H^m$ $R_H^s = R_H^m$ $R_H^s = R_H^m = 0$ No, the answer is incorrect. Score: 0 Accepted Answers: $R_H^s > R_H^m$ 13)

According to Drude' model, what is the change in the magnitude of the longitudinal resistance of when a magnetic field (B) is applied perpendicular to it,

 $\Delta \rho = 0$ $\Delta \rho \propto B$ $\Delta \rho \propto 1/B$

 $V_H = 10^{-4} \ {f V}$

Previous Page

End