

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

Structure

 $L^{\underline{dI}} + RI = 0$

Funded by

Crystals with Monatomic Basis, Acoustic modes

Two Atoms per Primitive Basis, Quantization of Elastic Waves, Phonon Momentum

Bloch's theorem for wavefunction of a particle in a periodic potential, nearly free electron model, origin of energy band gaps, discussion of Bloch wavefunction

Band theory of metals, insulators and semiconductors, Kronig-Penney model, tight binding method of calculating bands, and semi-classical dynamics of a particle in a band

Introductory Semiconductor Physics

Magnetism in materials

Superconductivity

- Introduction to Meissner state of superconductors and levitation
- Superconducting materials and Type-I and Type-II superconductors
- London's equation for superconductors
- Application of London's equation, behavior of specific heat and density of

 $R\frac{dI}{dt} + LI = constant \neq 0$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$L\frac{dI}{dt} + RI = 0$$

3) For the question 1, the time dependence of the current in the ring is 1 point

0

 $I = I_0 \exp(-rac{R}{L} \mathrm{t})$

 $I=I_0(1-\exp(-rac{R}{L}\mathrm{t}))$

 $I = I_0 \exp(irac{R}{L} \mathrm{t}) ext{ where } i = \sqrt{-1}$

 $I(t) = I_0 rac{Rt}{L}$

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $I = I_0 \exp(-\frac{R}{L}t)$

- 4) If the material in question 1 becomes superconducting, then the correct equations describing the situation
 - \bigcirc Total current circulating in the ring I(t) is slightly greater than I_0 because of Meissner effect
 - lacksquare Total current circulating in the ring I(t) is slightly less than I_0 because of Meissner effect
 - Total current circulating in the ring I(t) is equal to I_0
 - \bigcirc Total current circulating in the ring I(t) will be zero

No, the answer is incorrect.

Score: 0

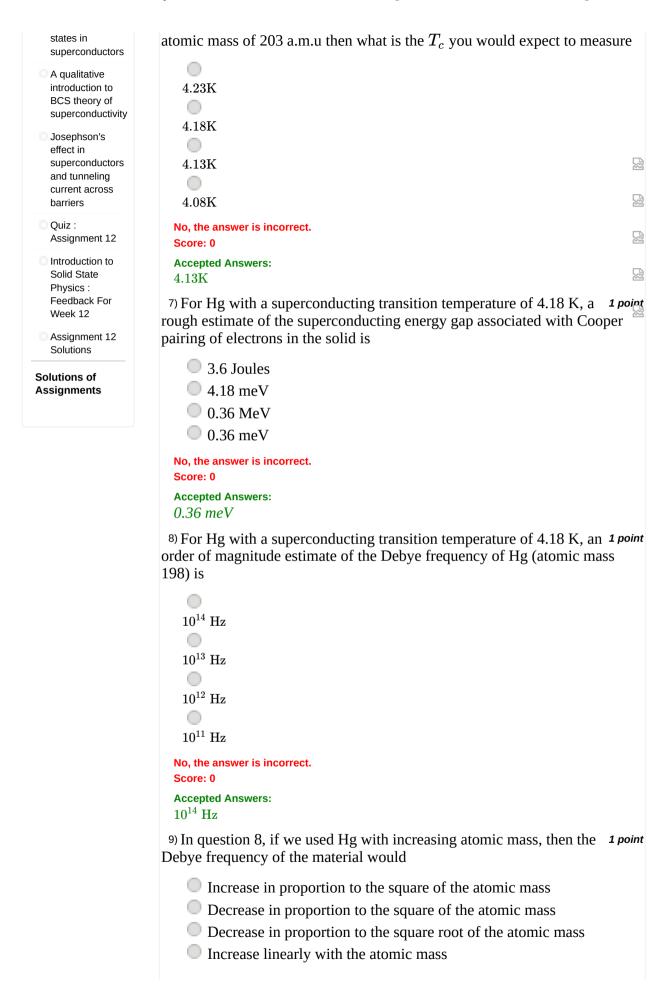
Accepted Answers:

Total current circulating in the ring I(t) is slightly less than I_0 because of Meissner effect

5) A true test of superconductivity developing in a material is

1 point

- Only when resistance R ® 0
- Magnetic susceptibility c= -1
- Magnetic susceptibility c= 1
- Only when conductivity becomes very high


No, the answer is incorrect.

Score: 0

Accepted Answers:

Magnetic susceptibility c = -1

⁶⁾ In the Kammeling Onnes experiment on superconductivity, the Hg 1 point on which he conducted his experiments had an atomic mass of 198 a.m.u. The superconducting transition temperature T_c was measured to be 4.18 K. If the same experiment was performed with using an isotope of Hg with

No, the answer is incorrect. Score: 0
Accepted Answers: Decrease in proportion to the square root of the atomic mass
10At the superconducting transition T_C , which of the following 1 point
statement is correct
It becomes relatively difficult to heat the electrons in the system with a very small amount of heat supplied to the material and the superconducting transition is a second order transition in zero applied magnetic field
It becomes very easy to heat up the electrons system by supplying a very small amount of heat and the superconducting transition is a second order transition in zero applied magnetic field
 It becomes very easy to heat the system and the superconducting transition is a first order transition in zero applied magnetic field
It becomes relatively difficult to heat the electrons in the system with a very small amount of heat supplied to the material and the superconducting transition is a first order transition in zero applied magnetic field
No, the answer is incorrect. Score: 0
Accepted Answers: It becomes relatively difficult to heat the electrons in the system with a very small amount of heat supplied to the material and the superconducting transition is a second order transition in zero applied magnetic field
¹¹ Consider two identical superconductors of Niobium (Nb) are connected to each other with the help of a superconducting wire also of Nb having a cross-sectional area X², where X is the superconducting coherence
length of Nb. The entire circuit is maintained at a temperature below the superconducting transition temperature of Nb. If a small finite voltage V is applied across the two superconductors then which of the following statements is true
The phase difference across the superconducting wire connecting the two superconductors will change as a function of time and a dissipationless time dependent current will flow across the junction
 The phase different across the superconductors will remain constant and no current will flow across the junction
 The junction will become normal and a dissipative current will flow across the superconductor
The phase difference across the junction will begin changing chaotically as a result the current across the junction will be very noisy
No, the answer is incorrect. Score: 0
Accepted Answers: The phase difference across the superconducting wire connecting the two superconductors will change as a function of time and a dissipationless time dependent current will flow across the junction

Previous Page

End