

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Funded by

In association with

Powered by

for wavefunction of a particle in a periodic potential. nearly free electron model, origin of energy band gaps, discussion of Bloch wavefunction

Band theory of metals, insulators and semiconductors, **Kronig-Penney** model, tight binding method of calculating bands, and semi-classical dynamics of a particle in a band

Introductory Semiconductor Physics

Magnetism in materials

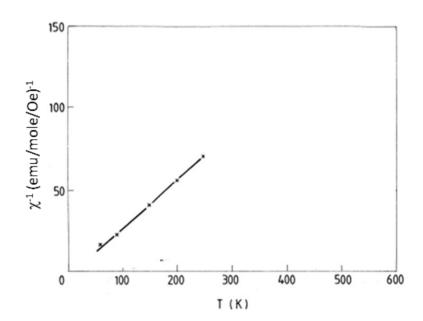
- Paramagnetism in solids I - Magnetic moment and Lande g factor for atoms
- Paramagnetism in temperature dependence of paramagnetic susceptibility and Curie's Law
- Hund's rule for calculating the total angular momentum J, orbital angular momentum L and spin angular momentum S for an atom
- Examples of performing paramagnetic susceptibility calculations
- Diamagnetism in Solids
- Understanding quenching of orbital angular momentum in transition metal ions
- Ferromagnetism in solids
- Quiz : Assignment
- Introduction to Solid State Physics:

the lowest energy state at temperature 1K is about

- 0.9 T
- 1.2 T
- 2.6 T
- 3.4 T

No, the answer is incorrect.

Score: 0


Accepted Answers:

3.4 T

Calculate the effective Bohr magneton number from the graph shown below (use:

 $N_A = 6.023 \times 10^{23}$ /mole, $\mu_0 = 4\pi \times 10^{-7}$ N/A², $\mu_B = 9.2 \times 10^{-21}$ erg/G, $k_B = 1.2 \times 10^{-23}$

J.K⁻¹, 1 emu.cc⁻³= 4π G, 1 A.m² = 10^3 erg/G)

 $0.1m_B$

 $5m_{R}$

 $10m_B$

 $1 \mathrm{m}_{\mathrm{B}}$

No. the answer is incorrect.

Score: 0

Accepted Answers:

 $5m_B$

6) Magnetic ions with S= 5/2 and L=0 are spaced 0.5nm apart. Temperature T below which they will have a high probability of alignment is

Feedback For	● 0.12 K	
Week 11	● 0.58 K	
Assignment 11 Solution	■ 1.2 K	
Superconductivity	● 4.2 K	
Solutions of	No, the answer is incorrect.	
Assignments	Score: 0	w
	Accepted Answers: 0.12 K	
		×
	_	×
	magnetization per mole. Value of \vec{B}_E for iron which has a Curie temperature of 1043 K and an effective magnetic moment of $2.2\mu_B$ is close to	×
		×
	□ 10000 T	
	● 7400 T	
	● 4700 T	
	● 2100 T	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers: 2100 T	
	⁸⁾ The ferromagnet europium oxide has a Curie temperature of 1 points 70 K. The europium ion has $J=7/2$ and $g=2$. Assuming mean field theory to be correct, the ratio of magnetization at 300 K in a field of 10^{-2} T to that at 0K will be close to	n
	0 7 7 V 10 5	
	 7.7 X 10⁻⁵ 5.1 X 10⁻⁵ 	
	7.7 X 10-6	
	● 7.7 X 10-4	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	7.7 X 10-5	
	Drovious Dose	
	Previous Page End	

Introduction	to	Solid	State	Physics	 Unit 12	
iiiii oaaciioii	UU	Ooma	Otato	1 11 9 3103	CIIICIZ .	• •

https://online courses-archive.nptel.ac.in/noc19...