ourses » Introduction to Solid State Physics				
	Announcements Course Ask a Question Progress F	-AQ		
Jnit 11 -		2		
ntroductor	y Semiconductor Physics	2		
Register for Certification exam	Assignment 10	2		
	The due date for submitting this assignment has passed.	~		
Course outline	As per our records you have not submitted this assignment.	9 IST.		
How to access the portal	1) The band gap of a semiconducting material is 1.18 eV and it has no impurities . If and the	1 poin		
Introduction to Drude's free electron theory of metals, electrical conductivity Ohm's law and Hall effect	number density of electrons in the conduction band (or the number density of holes in the valence band) of this material at 300K will be of the order of $10^{15}m^{-3}$ 0 $10^{19}m^{-3}$			
Introduction to Sommerfeld's model	$10^{23}m^{-3}$			
Specific heat of an electron gas and the behaviour of	$10^{29}m^{-3}$ No, the answer is incorrect.			
thermal conductivity of a solid and relationship with	Score: 0 Accepted Answers: $10^{15}m^{-3}$			
electrical conductivity	2) A highly pure germanium sample is at room temperature (300K). If the band gap of germanium is 0.7eV, the temperature at which the conductivity of a sample of germanium is 25	1 poin %		
Introduction to crystal structure and their classifications	higher than that at the room temperature is close to 405K 305K			
	325К			

Introduction to Solid State Physics - - Unit 11 - I...

Crystals with this material will be at Monatomic ce De about **Basis**, Acoustic modes -11.3 meV -5.6 meV Two Atoms per Primitive Basis, -1.3 meV **Ouantization of** Elastic Waves, -0.7 meV Phonon Momentum No, the answer is incorrect. Score: 0 Bloch's theorem **Accepted Answers:** for wavefunction of a particle in a -0.7 meV periodic 4) In a particular semiconductor, there are $10^{19}\ donors/m^3$ and conduction level is 1 1 point potential, nearly meV below the bottom of the conduction band. If the effective mass of electrons in conduction free electron model, origin of band is $m_e^st = 0.01 m_e$, the number density of conduction electrons at 2K will be of close to energy band 2 gaps, discussion of $7.8 imes 10^{15}m^{-3}$ Bloch wavefunction $2.8 imes 10^{16}m^{-3}$ Band theory of metals. insulators and $5.0 imes10^{17}m^{-3}$ semiconductors, Kronig-Penney model, tight $1.2 imes 10^{18}m^{-3}$ binding method of calculating No, the answer is incorrect. bands, and Score: 0 semi-classical Accepted Answers: dynamics of a particle in a $1.2 imes 10^{18} m^{-3}$ band 5) In the problem above, the Fermi level is about 1 point Introductorv Semiconductor 0.88 meV above the donor leve Physics 0.54 meV above the donor level Concept of hole 0.35 meV above the donor level as a current carrier in 0.18 meV above the doneor level semiconductors-No, the answer is incorrect. Т Score: 0 Concept of hole as a current **Accepted Answers:** carrier in 0.35 meV above the donor level semiconductors-Ш 6) A sample of silicon contains 10^{-4} atomic percent of phosphorus donors which are all 1 point singly ionized at room temperature. If the mobility of electrons in silicon is $0.15m^2V^{-1}s^{-1}$, Calculating carrier density the extrinsic resistivity of this material is (silicon atomic weight is 28 and its density is $2300 kqm^{-3}$) in semiconductors - 1 $1.3 imes 10^{-3}\Omega m$ Calculating carrier density $8.4 imes 10^{-4}\Omega m$ in semiconductors \bigcirc - 11 $5.5 imes 10^{-4}\Omega m$ Donor and acceptor $9.7 imes 10^{-5}\Omega m$ energy levels in

semiconductor

Charge carrier density in n-type and p-type semiconductors

Electrical conductivity and hall coefficient in semiconductors

Quiz : Assignment 10

Introduction to Solid State Physics : Feedback For Week 10

Magnetism in materials

Superconductivity

 $1.42\Omega-m^{-1}$

 $14.2\Omega-m^{-1}$

Accepted Answers: $3.84\Omega-m^{-1}$

No, the answer is incorrect.

Score: 0

Solutions of Assignments

Score: 0	
Accepted Answers: $8.4 imes 10^{-4} \Omega m$	
7) It may be generally expected that an intrinsic semiconductor will Hall coefficient $R_H=0$ because of equal number of electrons and holes. However, di mobility of the carriers gives a non-zero Hall coefficient. If the number of electrons a n and their mobility μ_e and μ_h , respectively then (keep in mind that the transverse	nd holes is
the current in that direction vanishes)	
0	2
$R_H=rac{1}{ne}(rac{\mu_h-\mu_e}{\mu_h+\mu_e})^3$	_
$ne(\mu_h + \mu_e)$	<u></u>
$R_H=rac{1}{ne}(rac{\mu_h-\mu_e}{\mu_h+\mu_e})^2$	-
•	
$R_{H}=rac{1}{ne}rac{\mu_{h}^{2}-\mu_{e}^{2}}{\left(\mu_{h}+\mu_{e} ight)^{2}}$	
$R_H=rac{1}{ne}(rac{\mu_h^2-\mu_e^2}{\mu_h^2+\mu_e^2})$	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: $R_{H}=rac{1}{ne}rac{\mu_{h}^{2}-\mu_{e}^{2}}{\left(\mu_{h}+\mu_{e} ight)^{2}}$	
$m_H = n e ~(\mu_h + \mu_e)^2$	
8) For silicon semiconductor with band gap 1.12eV, position of the Fermi level at 300K, $m_e^*=0.12m_0$ and $m_h^*=0.28m_0$ is	t 1 point
0.57eV	
● 1.14eV	
2.5eV	
0.27eV	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: 0.57eV	
9) The electrical conductivity of intrinsic Silicon at 300K , having electron mobility $\mu_e=0.15m^2V^{-1}s^{-1}$ and hole mobility $\mu_e=0.05m^2V^{-1}s^{-1}$ is closed	1 point
•	
$3.84\Omega-m^{-1}$	
$38.4\Omega-m^{-1}$	

Wednesday 12 June 2019 02:20 PM

뮲

R

Previous Page	End