Courses » Introduction to Solid St	ate Physics Announcements Course Ask a Question Progress FAQ
Unit 10 - Band the tight binding meth	ory of metals, insulators and semiconductors, Kronig-Penney model, nod of calculating bands, and semi-classical dynamics of a particle in a
band	
Register for Certification exam	Assignment 9
Course outline	The due date for submitting this assignment has passed. Due on 2019-04-03, 23:59 IST.
How to access the portal	As per our records you have not submitted this assignment. 1) 1 1 point
Introduction to Drude's free electron theory of metals, electrical conductivity Ohm's law and Hall effect	In free electron model energy $E(\vec{k})$, for an arbitrary wavevector \vec{k} on the Bragg p
Introduction to Sommerfeld's model	$\vec{K}/2$, is given by $E(\vec{k}) = E_{\vec{K}/2} + E_{\vec{k}}$. In case of weak periodic potential, the exp
Specific heat of an electron gas and the behaviour of thermal conductivity of a solid and relationship with electrical conductivity	$E_{modified}(\vec{k}) = E_{\vec{k}/2} + E_{\vec{k}} \pm U_{\vec{k}} $. For $E_{modified}(\vec{k})$, Fermi surface intersects with radius r_1 and r_2 . Difference between the area enclosed by the circles of radius r_1 and r_2 .
Introduction to crystal structure and their classifications	$4m\pi U_K$
Direct Imaging of Atomic Structure, Diffraction of Waves by Crystals, Reciprocal lattice, Brillouin Zones	$2m\pi U_K$
Vibrations of Crystals with Monatomic Basis, Acoustic modes	$ m\pi U_K $
Two Atoms per Primitive Basis, Quantization of Elastic Waves, Phonon Momentum	$8m\pi U_K$ No, the answer is incorrect.
Bloch's theorem for wavefunction of a particle in a periodic potential, nearly free electron model, origin of energy band gaps, discussion of Bloch wavefunction	Score: 0 Accepted Answers: $4m\pi U_K$
Band theory of metals, insulators and semiconductors, Kronig- Penney model, tight binding method of calculating bands,	2) 1 point
and semi-classical dynamics of a particle in a band Band theory of metals, insulators and semiconductors Kronig- Penney model Bloch wavefunction as a linear combination of atomic orbitals:	
Tight Binding Model- I	0 $a a+b$ x
Semiclassical dynamics of a particle in a band and Bloch	In the potential model used in connection with Kronig-Penny calculation, if the potential
oscillations	allowed to infinitely large i.e. $V_0 \rightarrow \infty$ and $b \rightarrow 0$ (delta function potential) in such a wa that $V_0 b$ remains finite then allowed energy values are given by the equation
Bloch oscillations Quiz : Assignment 9	
Introduction to Solid State Physics : Feedback For Week	$\frac{P\sin(aa)}{aa} + \cos(aa) = \cos(ka) \text{ where } P = \frac{mV_0ab}{\hbar^2} \dots \dots (1)$
9 Introductory Semiconductor Physics	If <i>P</i> is large (but not infinite) then what happens?
Magnetism in materials	$_{\odot}$ The allowed bands are narrower and the forbidden bands are wider
Superconductivity Solutions of Assignments	$_{\odot}$ The allowed bands are wider and the forbidden bands are narrower
	Band reduces to one single energy level
	Can't say anything
	No, the answer is incorrect. Score: 0 Accepted Answers:
	The allowed bands are narrower and the forbidden bands are wider
	In equation (1) if P is very small. Then it leads to
	Tight binding model
	 Free electron model Intermediate case
	Can't say anything
A project of	© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - In association with Funded by Powered by

뭤

The energy wave vector dispersion relation for a one-dimensional crystal of lattice constant a is given by

$E(k) = E_0 - \alpha - 2\beta \cos(k\alpha)$, where $E_0 \alpha$, β are constants	
---	--

The effective mass m^* of the electron at the bottom and at the top of the band are-

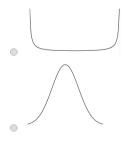
$\frac{\hbar^2}{2\beta\alpha^2} \text{ and } \frac{\hbar^2}{2\beta\alpha^2}$ $\frac{\hbar^2}{2\beta\alpha^2} \text{ and } -\frac{\hbar^2}{2\beta\alpha^2}$ $\frac{\hbar^2}{2\alpha^2} \text{ and } -\frac{\hbar^2}{2\beta\alpha^2}$ $\frac{\hbar^2}{\beta\alpha^2} \text{ and } -\frac{\hbar^2}{\beta\alpha^2}$	
No, the answer is incorrect. Score: 0	
Accepted Answers: $\frac{\hbar^2}{2\beta\alpha^2}$ and $-\frac{\hbar^2}{2\beta\alpha^2}$	
5)	1 point

For the Kronig–Penney model with P (= $\frac{mV_0ba}{\hbar^2}$) <<1, at K = 0, the energy of the lowest energy band is approximately

$$E_{0} \approx P \frac{\hbar^{2}}{md^{2}}$$

$$E_{0} \approx P \frac{\hbar}{mb^{2}}$$

$$E_{0} \approx P \frac{\hbar^{2}}{md}$$


$$E_{0} \approx P \frac{\hbar^{2}}{ma^{2}}$$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$E_{0} \approx P \frac{\hbar^{2}}{md^{2}}$$

Imagine a 1D crystal with an energy band described by $E(K) = E_B + (E_T - E_B)sin^2\left(\frac{Kd}{2}\right)$; (E_T and E_B are top and bottom of band) where that contains only a single electron. Effective mass depends on K as

\hbar^2
$d^2\cos(Kd)$
<u></u>
$d\cos(Kd)$
\hbar^2
$\int d^2 \cos(Kd/2)$
2ħ ²
$\int d^2 \cos(Kd)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
2ħ ²
$d^2\cos(Kd)$
7)

In Problem 6, effective mass depends on K. Which graph best describe dependence of effective mass on K (in the range $-\pi/2$ to $\pi/2$):

1 point

1 point

)	
No, the answer is incorrect.		
Score: 0 Accepted Answers:		
⁸⁾	$_{1\text{point}}$	t
oscillation:	ing is 2 Å and the field strength is 200 N/C, what is the period of	
97 MHz		
61 MHz		
55 MHz		
10 MHz		
No, the answer is incorrect. Score: 0		
Accepted Answers: 61 MHz		
9)	1 poin	t
If force F is appli	ied, what will be amplitude of oscillation if the band width is $\boldsymbol{\Delta}$	
Δ/2F		
 Δ/F 		
$\Delta/4F$		
$^{2\Delta F}$		
No, the answer is incorrect. Score: 0		
Accepted Answers: $\Delta/2F$		
10)	1 point	t
	the nearest neighbour lattice sites are $(\pm a, 0, 0)$, $(0, \pm a, 0)$ and $(0, 0, 0)$ ion relation is given by	
	$E(k) = E_0 - 2t(\cos(k_x a) + \cos(k_y a) + \cos(k_z a))$	
	ping parameters are the same in all directions: $t_a = t$, the width of	the
● 12t		
0		

6t No, the answer is incorrect. Score: 0 Accepted Answers:

12t

Previous Page

End

- Ø
- R
- 59