PTEL	reviewer4@nptel.iitm.a	
ourses » Semicond	uctors Optoelectronics	
Jnit 7 - Wee	Announcements Course Ask a Question Progress FAQ	
Register for Certification exam	Assessment 5	
Course outline	The due date for submitting this assignment has passed. As per our records you have not submitted this Due on 2019-03-06, 23:59 IST. assignment.	
How to access the portal	Instructions:	
Self-assessment before course start	 Answer all questions; all questions carry equal mark. All symbols have their usual meanings. 	
Week 1	3. Only one of the options is correct	
Week 2	4. You can see the correct answers after the last date of submission.	
Week 3	Note:	
Week 4	Marks obtained in this quiz will be counted towards your final score. You can take the quiz and submit it any number of times, and the latest submitted answers will be taken as your final submission.	
Week 5	Physical Constants:	
Interaction of	$m_0 = 9.11 \ge 10^{-31}$ kg; $h = 6.627 \ge 10^{-34}$ J-s; $e = 1.602 \ge 10^{-19}$ C; $k_B = 1.38 \ge 10^{-23}$ J/K	
Photons with Electrons and	1) Which one of the following statements is <i>incorrect</i> ? 1 <i>po</i>	
Holes in a Semiconductor	Spontaneous emission is the basis for operation of the light emitting diodes.	
 Optical Joint Density of States, and 	Stimulated emission is the basis for the operation of semiconductor lasers.	
Probabilities of Emission and Absorption	Stimulated absorption is the basis for the operation of photo- detectors.	
 Rates of Emission and Absorption 	 Spontaneous emission is the basis for the operation of <i>laser diodes</i>. No, the answer is incorrect. Score: 0 	
Quiz : Assessment 5	Accepted Answers: Spontaneous emission is the basis for the operation of laser diodes.	

Week 9	Electron, hole, phonon, photon
Week 10	Electron, hole, photon
Week 11	 No, the answer is incorrect. Score: 0
Week 12	Accepted Answers: Electron, hole, phonon, photon
Exam Instructions	3) Calculate the optical joint density of states available for radiation of wavelength 1550 nm 0 points incident on a <i>direct bandgap</i> semiconductor with $E_g = 0.7$ eV. Assume that $m_c = m_v = m_0$.
Lecture Transcripts	6.30 x 10 ¹² m ⁻³ s
	\odot 3.15 x 10 ²² m ⁻³ s
	8.91 x 10 ¹³ m ⁻³ s
	4.45 x 10 ²² m ⁻³ s
	No, the answer is incorrect.

4) In a semiconductor, the probability of absorption can be less than the probability of **1** point emission of photons of energy hv, if—

 $E_g < hv < E_{fc} - E_{fv}$ $E_{fc} - E_{fv} < E_g < hv$ $E_{fc} = E_{fv}, hv > E_g$ $E_{fc} = E_{fv}, hv < E_g$

Score: 0

Accepted Answers: $3.15 \times 10^{22} \text{ m}^{-3} \text{s}$

No, the answer is incorrect. Score: 0

Accepted Answers: $E_g < hv < E_{fc} - E_{fv}$

5) The rate of spontaneous emission of a semiconductor source, with $E_g = 0.70 \text{ eV} \mathbf{1} \text{ point}$ for the semiconductor, is given by:

$$r_{sp}(
u)=e^{-a^2(h
u-E_g-2kT)^2}$$

where $a = rac{1}{kT}$

The wavelength corresponding to the peak of the emission spectrum at room temperature is (approximately)—

🔘 1.48 μm

1.54 μm

🔵 1.65 μm

🔵 1.77 μm

No, the answer is incorrect. Score: 0 Accepted Answers: 1.65 μm Previous Page

R
R
R
R