Courses » Semiconductors Optoelectronics

Announcements Course Ask a Question Progress FAQ

Unit 7 - Week 5

Register for Certification exam
Course outline
How to access the portal
Self-assessment before course start
Week 1
Week 2
Week 3
Week 4
Week 5
Interaction of Photons with Electrons and Holes in a Semiconductor
Optical Joint Density of States, and Probabilities of Emission and Absorption
Rates of Emission and Absorption
Quiz : Assessment 5

Assessment 5

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2019-03-06, 23:59 IST. assignment.

Instructions:

1. Answer all questions; all questions carry equal mark.
2. All symbols have their usual meanings.
3. Only one of the options is correct
4. You can see the correct answers after the last date of submission.

Note:
Marks obtained in this quiz will be counted towards your final score. You can take the quiz and submit it any number of times, and the latest submitted answers will be taken as your final submission.

Physical Constants:
$m_{0}=9.11 \times 10^{-31} \mathrm{~kg} ; h=6.627 \times 10^{-34} \mathrm{~J}-\mathrm{s} ; e=1.602 \times 10^{-19} \mathrm{C} ; k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

1) Which one of the following statements is incorrect? 1 pointSpontaneous emission is the basis for operation of the light emitting diodes.
Stimulated emission is the basis for the operation of semiconductor lasers.
Stimulated absorption is the basis for the operation of photodetectors.

Spontaneous emission is the basis for the operation of laser diodes.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Spontaneous emission is the basis for the operation of laser diodes.

Week 9
Week 10
Week 11
Week 12
Exam
Instructions
Lecture
Transcripts

0
 Electron, hole, phonon, photon

Electron, hole, photonNo, the answer is incorrect.
Score: 0
Accepted Answers:
Electron, hole, phonon, photon
3) Calculate the optical joint density of states available for radiation of wavelength 1550 nm 0 points incident on a direct bandgap semiconductor with $\mathrm{E}_{\mathrm{g}}=0.7 \mathrm{eV}$. Assume that $m_{c}=m_{V}=m_{0}$.$6.30 \times 10^{12} \mathrm{~m}^{-3} \mathrm{~s}$$3.15 \times 10^{22} \mathrm{~m}^{-3} \mathrm{~s}$$8.91 \times 10^{13} \mathrm{~m}^{-3} \mathrm{~s}$$4.45 \times 10^{22} \mathrm{~m}^{-3} \mathrm{~s}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$3.15 \times 10^{22} \mathrm{~m}^{-3} \mathrm{~S}$
4) In a semiconductor, the probability of absorption can be less than the probability of

1 point emission of photons of energy hv, if-$\mathrm{E}_{\mathrm{g}}<\mathrm{hv}<\mathrm{E}_{\mathrm{fc}}-\mathrm{E}_{\mathrm{fv}}$$\mathrm{E}_{\mathrm{fc}}-\mathrm{E}_{\mathrm{fv}}<\mathrm{E}_{\mathrm{g}}<\mathrm{hv}$$E_{f c}=E_{f v}, h v>E_{g}$$E_{f c}=E_{f v}, h v<E_{g}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$E_{g}<h v<E_{f c}-E_{f v}$
5) The rate of spontaneous emission of a semiconductor source, with $\mathrm{E}_{\mathrm{g}}=0.70 \mathrm{eV} 1$ point for the semiconductor, is given by:
$r_{s p}(\nu)=e^{-a^{2}\left(h \nu-E_{g}-2 k T\right)^{2}}$
where $a=\frac{1}{k T}$
The wavelength corresponding to the peak of the emission spectrum at room temperature is (approximately) -$1.48 \mu \mathrm{~m}$
$1.54 \mu \mathrm{~m}$$1.65 \mu \mathrm{~m}$
$1.77 \mu \mathrm{~m}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$1.65 \mu \mathrm{~m}$Previous PageEnd

