ourses » Semiconductors Optoelectronics						
Jnit 5 - Wee	ek 3	Announcements	Course	Ask a Question	Progress	FAQ
Register for Certification exam	Asses	sment 3				
Course outline	The due date As per our re assignment.	e for submitting this ass ecords you have not su	signment has bmitted this	passed. Due on 202	19-02-20, 23	:59 IST
How to access the portal	Instructio	ns:				
Self-assessment before course start	 Answer al All symbol 	l questions; all question Is have their usual mea	s carry equal nings.	mark.		
Week 1	3. Only one of	of the options is correct				
Week 2	4. You can se	ee the correct answers	after the last (date of submission.		
Week 3 Semiconductor Materials	Note: Marks obtaine any number of	d in this quiz will be count f times, and the latest sub	ed towards you nitted answers	ır final score. You can ta will be taken as your fir	ake the quiz and nal submission.	submit it
 Semiconductor Heterostructures- Lattice- Matched Layers 	Physical Co m _e = 9.11 x 1 1) Which one	<u>nstants:</u> 0 ⁻³¹ kg; h = 6.627 x 10 ⁻ of the following pairs of t	³⁴ Js; e = 1.60 ernary compo	02 x 10 ⁻¹⁹ C; k _B = 1.3 unds are lattice matche	8 x 10 ⁻²³ J/K ed to InP?	1 poi
 Strained-Layer Epitaxy and Quantum Well Structures 						
Quiz : Assessment 3						
Solutions of Assessment 3						
Week 4						
Week F						

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

All semiconductor quantum wells are double heterostructures.

4) A light beam of wavelength 650 nm is incident on two semiconductors A and B, having **1** point bandgap energies E_g^A and E_g^B , respectively. It is observed that the light is highly attenuated after passing through Semiconductor A, while almost all the light passes through Semiconductor B. Which one of the following statements is *correct*?

\bigcirc E _g ^B > 2.0 eV and E _g ^A > E _g ^B	
\bigcirc E _g ^A < 2.0 eV and E _g ^B > E _g ^A	R
$ E_g^B < 1.8 \text{ eV and } E_g^B > E_g^A $ $ E_g^A > 1.8 \text{ eV and } E_g^A > E_g^B $	
No, the answer is incorrect. Score: 0	2
Accepted Answers: $E_g^A < 2.0 \text{ eV}$ and $E_g^B > E_g^A$	
) The direct bandgap energy (in eV) of the ternary compound	1 point

⁵⁾ The direct bandgap energy (in eV) of the ternary compound GaAs_{1-x}P_x is given by

 $E_g(x) = 1.424 + 1.150x + 0.176x^2; 0 \leq x \leq 0.45$

Which of the following alloy composition would correspond to a bandgap wavelength of 720 nm?

\odot	GaAs _{0.75} P _{0.25}			
\odot	GaAs _{0.70} P _{0.25}			
	GaAs _{0.65} P _{0.30}			
\odot	GaAs _{0.60} P _{0.40}			
No, the answer is incorrect Score: 0				
Accep GaAs ₀	ted Answers: .75 ^P 0.25			

Previous Page

End