Courses » Theory of groups for physics applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 9 - Week

Course outline

How to access the portal

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

- Lecture 29:

Classical
Groups-
Topology-I

- Lecture 30:

Classical
Groups-
Topology-II

- Lecture 31:

SO(3) And
Matrix
Exponent-I

- Lecture 32:

SO(3) And
Matrix
Exponent-II

Week 8- Assignment 8-MCQ

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-26, 23:59 IST. assignment.

1) In the following groups which is/are connected group(s)?

1 point
$S U(2)$
$U(n)$
$G L(n, \mathbb{C})$
All of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above
2) Identify the number of independent parameters in the group $S p(6)$.

1 point
-6
No, the answer is incorrect.
Score: 0
Accepted Answers:
21
3) An $S U(2)$ matrix $u_{\hat{\mathbf{n}}}$ is given as below, where τ^{i} are Pauli

1 point
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

Theory of groups for physics applications - - Unit...

8-MCQ - Week8- Lecture Slides and Reading Materials	$\binom{\sqrt{3}+i}{0}$	
Week8- Assignment8- Solutions		$\frac{1}{2}\binom{\sqrt{3}+i}{0}$
Week 9	$\binom{\sqrt{3}-i}{0}$	
Week 10		$\frac{1}{2}\binom{\sqrt{3}-i}{0}$
Week 11		

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\frac{1}{2}\binom{\sqrt{3}-i}{0}
$$

4) Obtain a closed form expression for the one parameter subgroup $\exp \left\{\alpha K_{1}\right\}$ where α is 1 point a real parameter and $\left\{K_{1}\right\}_{i j}=\delta_{i 0} \delta_{j 1}+\delta_{j 0} \delta_{i 1}, i, j=0,1,2,3$ is the generator of Lorentz boosts along the x^{1} axis.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\cosh \alpha & -\sinh \alpha & 0 & 0 \\
-\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cosh \alpha & \sinh \alpha \\
0 & 0 & \sinh \alpha & \cosh \alpha
\end{array}\right) \\
& \left(\begin{array}{cccc}
\cosh \alpha & \sinh \alpha & 0 & 0 \\
\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \left.\begin{array}{cccc}
\cosh \alpha & -\sinh \alpha & 0 & 0 \\
\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\left(\begin{array}{cccc}
\cosh \alpha & \sinh \alpha & 0 & 0 \\
\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$S U(2)$
$U(n)$
$G L(n, \mathbb{C})$None of the above.

No, the answer is incorrect.
Score: 0
Accepted Answers:
$S U(2)$
6) In Special Relativity, the Minkowski metric is

1 pointvalid on all Riemann sheets.positive definite.not positive definite.None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
not positive definite.
7) For a Unitary matrix U we can write

$$
U^{-1}=U^{T}
$$

$$
U^{-1}=U^{\dagger}
$$

$$
U^{-1}=U
$$

$U=U^{\dagger}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$U^{-1}=U^{\dagger}$
8) In Minkowski space, infinitesimal spacetime intervalcan be positive, negative or zeroalways positive
always negativealways takes a constant value
No, the answer is incorrect.
Score: 0
Accepted Answers:
can be positive, negative or zero
9) In spherical polar coordinates in 3

1 point
dimensions, $(d \mathfrak{l})^{2}=(d r)^{2}+r^{2}(d \theta)^{2}+r^{2} \sin ^{2} \theta(d \phi)^{2}$, then the metric of this space can be

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} \sin ^{2} \theta & 0 \\
0 & 0 & r^{2}
\end{array}\right) \\
& 0 \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right) \\
& \left(\begin{array}{ccc}
r^{2} & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & r^{2} & 0 \\ 0 & 0 & r^{2} \sin ^{2} \theta\end{array}\right)$
10) Find the $\left\{q^{2} p, p^{2} q\right\}_{P B}$, where PB refers to the Poisson Bracket with respect to (q, p). $\mathbf{1}$ point
$-3 p^{2} q^{2}$
$3 p q^{2}$
$3 p^{2} q$
$3 p^{2} q^{2}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$3 p^{2} q^{2}$

> Previous Page

