Courses » Theory of groups for physics applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 8 - Week

Course
 outline

How to access
the portal

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

- Lecture 25:

Preliminaries
About The
Continuum-I

- Lecture 26:

Preliminaries
About The
Continuum-II

- Lecture 27:

Classical
Groups-I

- Lecture 28:

Classical
Groups-II
Week7-Lecture
Slides and
Reading
Materials

Week 7-Assignment 7-MCQ

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-19, 23:59 IST. assignment.
1)

The dimension of the $S U(4)$ representation obtained from the Young tableau \square is
1 point

Only translation of the center of mass(CM) by a vector.

Only rotation about some axis \hat{n} by angle θ.

Both translation of the CM by a vector and rotation about some axis \hat{n} by angle θ.
None of the above.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Both translation of the CM by a vector and rotation about some axis \hat{n} by angle θ.
3) For any arbitrary vectors $x, y, z \in \mathcal{V}$ (where \mathcal{V} is Linear Vector Space) and

National Programme on Technology Enhanced Learning

7-MCQ

Week7-
Assignment7-
Solutions

Week 8

Week 9

Week 10

Week 11

Week 12
$c e \mathrm{De}$

$$
\begin{aligned}
& (x, a y+b z)=a^{*}(x, y)+b^{*}(x, z) \\
& (x, y)=(y, x)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$(a x+b y, z)=a^{*}(x, z)+b^{*}(y, z)$
4) A set whose (points) elements can be put in one-one correspondence with natural numbers upto a specific number N is called

No, the answer is incorrect.
Score: 0
Accepted Answers:
enumerable set.
5) Schwarz inequality for all vectors \mathbf{u} and \mathbf{v} of an inner product space can be stated as

1 point (where $\langle.,$.$\rangle s the inner product),$

$$
\begin{aligned}
& |\langle\mathbf{u}, \mathbf{v}\rangle| \leq\langle\mathbf{u}, \mathbf{u}\rangle \cdot\langle\mathbf{v}, \mathbf{v}\rangle \\
& |\langle\mathbf{u}, \mathbf{v}\rangle|^{2}=\langle\mathbf{u}, \mathbf{u}\rangle \cdot\langle\mathbf{v}, \mathbf{v}\rangle \\
& |\langle\mathbf{u}, \mathbf{v}\rangle|^{2} \geq\langle\mathbf{u}, \mathbf{u}\rangle \cdot\langle\mathbf{v}, \mathbf{v}\rangle \\
& |\langle\mathbf{u}, \mathbf{v}\rangle|^{2} \leq\langle\mathbf{u}, \mathbf{u}\rangle \cdot\langle\mathbf{v}, \mathbf{v}\rangle
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$|\langle\mathbf{u}, \mathbf{v}\rangle|^{2} \leq\langle\mathbf{u}, \mathbf{u}\rangle \cdot\langle\mathbf{v}, \mathbf{v}\rangle$
6) Time reversal in Minkowski space in 4 dimension with metric
signature, $\eta_{\mu \nu}=\{1,-1,-1,-1\}$ can be termed asIdentityImproper rotationProper rotation
Done of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
Improper rotation
7) Number of independent parameters of group $S L(2, \mathbb{C})$ is

1 point

No, the answer is incorrect.
Score: 0
Accepted Answers:
6
8) Lorentz group in 4 dimensions contains3 spatial rotations + time translation4 spacetime translations +3 velocity boosts3 spatial translations +3 velocity boosts3 spatial rotations +3 velocity boosts

No, the answer is incorrect.
Score: 0
Accepted Answers:
3 spatial rotations +3 velocity boosts
9) The group of one dimensional translations is

1 pointa compact groupa non-compact groupa discrete groupa non-abelian group

No, the answer is incorrect.
Score: 0
Accepted Answers:
a non-compact group
10)The order of a continuous group depends on

1 pointnumber of group elements near the identity.number of group elements.number of independent group parameters.dimension of spacetime.

No, the answer is incorrect.
Score: 0
Accepted Answers:
number of independent group parameters.

Previous Page

