Courses » Theory of groups for physics applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 7 - Week

6

Course outline

How to access
the portal

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

- Lecture 21: Orthogonality For
Characters-I
- Lecture 22: Orthogonality
For
Characters-II
- Lecture 23:

Character
Tables \&
Molecular
Applications-I

- Lecture 24:

Character
Tables \&
Molecular
Applications-II

- Week6-Lecture Slides and

Week 6-Assignment 6-MCQ

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-12, 23:59 IST. assignment.

1) Given that in some representation D, the following elements of S_{3} are represented as 1 point $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \equiv D_{2} ; \quad\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \equiv D_{3}$
Find the weightages W_{i} of the irreducible representations D_{i} (i=1,2,3) in D (D_{1} denotes the identity element).

$$
W_{1}=1, W_{2}=0, W_{3}=1
$$

$$
W_{1}=1, W_{2}=1, W_{3}=1
$$

$$
W_{1}=1, W_{2}=0, W_{3}=2
$$

$$
W_{1}=1, W_{2}=2, W_{3}=1
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$W_{1}=1, W_{2}=0, W_{3}=1$
2) The multiplication table of a group is given in table 1.

National Programme on Technology Enhanced Learning

Funded by

Quiz : Week	
6-Assignment	ce De
6-MCQ	
Week6-	
Assignment6-	
Solutions	

Week 7

Week 8

Week 9

Week 10

Week 11

	E	A	B	C	K	L	M	N
E	E	A	B	C	K	L	M	N
A	A	K	N	B	L	E	C	M
B	B	C	K	L	M	N	E	A
C	C	M	L	K	N	B	A	E
K	K	L	M	N	E	A	B	C
L	L	E	C	M	A	K	N	B
M	M	N	E	A	B	C	K	L
N	N	B	L	E	C	M	A	K

Table 1.

Identify all the conjugacy classes.$\{E\},\{K\},\{A, L\},\{C, N\}$$\{E\},\{K\},\{A, L\},\{B, M\}$$\{E\},\{K\},\{A, L\},\{C, N\},\{B, M\}$$\{E\},\{K\},\{A, L\},\{C, N\},\{B, M\},\{A, B, C\}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\{E\},\{K\},\{A, L\},\{C, N\},\{B, M\}$
3) Given the great orthogonality theorem for unitary representations α and β

1 point

$$
\sum_{g \in G} D_{i l}^{(\alpha)}(g) D_{j m}^{(\beta) *}(g)=\frac{|G|}{n_{\alpha}} \delta_{i j} \delta_{m l} \delta^{\alpha \beta}
$$

Obtain a similar statement for the characters of the representations.

$$
\begin{aligned}
& \sum_{g \in G} \chi^{(\alpha) *}(g) \chi^{(\beta) *}(g)=|G| \delta^{\alpha \beta} \\
& \sum_{g \in G} \chi^{(\alpha) *}(g) \chi^{(\beta)}(g)=|G| \delta^{\alpha \beta} \\
& \sum_{g \in G} \chi^{(\alpha)}(g) \chi^{(\beta)}(g)=|G| \delta^{\alpha \beta} \\
& \sum_{g \in G} \chi^{(\alpha)}(g) \chi^{(\beta) *}(g)=|G| \delta^{\alpha \beta}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\sum_{g \in G} \chi^{(\alpha)}(g) \chi^{(\beta) *}(g)=|G| \delta^{\alpha \beta}$
4) If Γ is a d dimensional irreducible representation of a group G and B is a $d \times d$ matrix such that $\Gamma(T) B=B \Gamma(T)$ for every $T \in G$, then B must be a/anNull matrixIdempotent matrix.Multiple of the unit matrixNo conclusions regarding he matrix nature can be drawn
No, the answer is incorrect.

Score: 0

Accepted Answers:
Multiple of the unit matrix
5) For a specific representation, $\Gamma(E)=\mathbb{I}_{n \times n}$ for the identity E of a group G, then the 1 point character $\chi(E)$ will be

No, the answer is incorrect.
Score: 0
Accepted Answers:
n
6) "For two representations of a group to be equivalent, they must have identical character 1 point systems" -- This statement isa necessary condition but not sufficient.a sufficient condition but not necessary.both necessary and sufficient.not a valid condition.

No, the answer is incorrect.
Score: 0
Accepted Answers:
a necessary condition but not sufficient.
7) For a finite group G, the number of inequivalent irreducible representations is equal to the $\mathbf{1}$ point
number of generator(s) of G
number of conjugacy class(es) of G
order of group G
number of factor groups of G
No, the answer is incorrect.
Score: 0
Accepted Answers:
number of conjugacy class(es) of G
8) Dimensions d_{i} of the inequivalent irreducible representations of the crystallographic point 1 point group D_{4} are

$$
\begin{aligned}
& d_{1}=d_{2}=d_{3}=d_{4}=2, d_{5}=1 \\
& d_{1}=d_{2}=d_{3}=d_{4}=1, d_{5}=2
\end{aligned}
$$

$$
d_{1}=d_{2}=d_{3}=1, d_{4}=d_{5}=2
$$

- None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
$d_{1}=d_{2}=d_{3}=d_{4}=1, d_{5}=2$
9) Consider a group which contains of an element g of order m i.e. such that $g^{m}=I$, when 1 point represented by an $n \times n$ matrix satisfies

$$
\chi(g)=\sum_{k=1}^{n} \lambda_{k}
$$

where λ_{m} is $m^{\text {th }}$ root of unity. Using the above property and algebraic properties of character tables, supply the "?" entry.

Class \backslash Irrep	$\chi^{(1)}$	$\chi^{(2)}$	$\chi^{(3)}$	$\chi^{(4)}$
	$n_{(1)}=1$	$n_{(2)}=1$	$n_{(3)}=1$	$n_{(4)}=3$
C_{1}	1	1	1	$?$
C_{2}	1	λ_{3}	λ_{3}^{2}	0
C_{3}	1	λ_{3}^{2}	λ_{3}	0
C_{4}	1	1	1	-1

No, the answer is incorrect.
Score: 0
Accepted Answers:
3
10Consider the set of 3×3 matrices $M(a)$ with $a \in \mathbb{R}$
1 point

$$
M(a)=\left(\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
a^{2} & 2 a & 1
\end{array}\right)
$$

This representation can be termed asFaithfulUnfaithfulTrivialEquivalent
No, the answer is incorrect.
Score: 0
Accepted Answers:
Faithful

