Courses " Theory of groups for physics applications

Unit 4 - Week

Course outline

How to access the portal

Week 1

Week 2

Week 3

- Lecture 9

Cycle
Structures \&
Molecular
Notation-I
Lecture 10: Cycle Structures \&
Molecular Notation-II

- Lecture 11: Cycle
Structures \&
Classification-I
- Lecture 12: Cycle
Structures \& Classification-II
- Week-3 Lecture Slides and Reading Materials

Download Videos

Weekly

Week 3-Assignment 3-MCQ

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-05, 23:59 IST. assignment.

1) Two conjugacy classes of a group 1 pointmust be disjoint and isomorphic.must be disjoint.can not be either disjoint or isomorphic.
\square none of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
must be disjoint.
2) Consider the symmetric group S_{8}. Choose the false statement from below. 1 pointThe subset consisting of permutations of six of the original eight objects is a subgroup.The subset consisting of odd permutations of the eight objects is a subgroup.The subset consisting of even permutations of seven of the original eight objects is a subgroup.

We can find cyclic groups as subgroups of S_{8}.
No, the answer is incorrect.
Score: 0
Accepted Answers:
The subset consisting of odd permutations of the eight objects is a subgroup.
3) Consider the dihedral group $D_{5 h}=\left\{e, a, a^{2}, a^{3}, a^{4}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right\}$ where, a is 1 point the rotation by $2 \pi / 5$ and σ_{h} is a π rotation about an axis in the plane perpendicular to the axis of the above rotations. Find the onlv invariant non-trivial subaroup of the followina aroup.

$$
\text { © } 2014 \text { NPTEL - Privacy \& Terms - Honor Code - FAQs - }
$$

National Programme on Technology Enhanced Learning

Funded by

S_{n}
None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
C_{n}
8) The number of possible cycle structures of the symmetric group S_{8} is

1 point

No, the answer is incorrect.
Score: 0
Accepted Answers:
22
9) The multiplication table of a group is given in table 1.

1 point

	E	A	B	C	K	L	M	N
E	E	A	B	C	K	L	M	N
A	A	K	N	B	L	E	C	M
B	B	C	K	L	M	N	E	A
C	C	M	L	K	N	B	A	E
K	K	L	M	N	E	A	B	C
L	L	E	C	M	A	K	N	B
M	M	N	E	A	B	C	K	L
N	N	B	L	E	C	M	A	K

Table 1.

Find the π_{K}.

$$
\begin{aligned}
& \left(\begin{array}{llllllll}
E & A & B & C & K & L & M & N \\
L & E & C & M & A & K & N & B
\end{array}\right) \\
& \left(\begin{array}{llllllll}
E & A & B & C & K & L & M & N \\
K & L & M & N & E & A & B & C
\end{array}\right) \\
& \left(\begin{array}{llllllll}
E & A & B & C & K & L & M & N \\
M & N & E & A & B & C & K & L
\end{array}\right) \\
& \left(\begin{array}{llllllll}
E & A & B & C & K & L & M & N \\
C & M & L & K & N & B & A & E
\end{array}\right)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left(\begin{array}{cccccccc}E & A & B & C & K & L & M & N \\ K & L & M & N & E & A & B & C\end{array}\right)$

10Suppose that the cycle structure of a particular element of a group, consists of
cycles ν_{k} as, $\nu_{1}=2, \nu_{2}=1, \nu_{3}=0, \nu_{4}=3, \nu_{5}=2$. The order of the conjugacy class to which the element belongs is,
5×10^{21}
7×10^{21}
3×10^{21}
10^{21}
No, the answer is incorrect.
Score: 0
Accepted Answers:
5×10^{21}

Previous Page

