Courses " Theory of groups for physics applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 3 - Week

2

Course outline

How to access the portal

Week 1

Week 2

- Lecture 5:

Lagrange's
Theorem \&
Cayley's
Theorem-I

- Lecture 6 Lagrange's
Theorem \&
Cayley's
Theorem-II
- Lecture 7:

Factor Group
Conjugacy
Classes-I

- Lecture 8:

Factor Group
Conjugacy
Classes-II

- Week2 Lecture

Slides and
Reading
Materials
Download
Videos
Weekly
Feedback
Quiz : Week

Week 2-Assignment 2-MCQ

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-08-15, 23:59 IST. assignment.

1) The number of proper subgroups of the cyclic group of order 8 is (excluding the trivial 1 point subgroup)

No, the answer is incorrect.
Score: 0
Accepted Answers:
2
2) Consider the two elements
of $S_{6}, g_{1}=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 3 & 2 & 1\end{array}\right), \quad g_{2}=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 6 & 5 & 4\end{array}\right)$. In cycle form these elements can be written as,

$$
g_{1}=(16)(2435), g_{2}=(132)(46)(5)
$$

$$
g_{1}=(15)(2436), g_{2}=(13)(246)(5)
$$

$$
g_{1}=(16)(24)(35), g_{2}=(132)(456)
$$

None of the above
No, the answer is incorrect.
Score: 0
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

A project of

National Programme on Technology Enhanced Learning

Funded by

Week 4	
Week 5	
Week 6	
Week 7	
Week 8	
Week 9	
Week 10	
Week 11	
Week 12	

	E	A	B	C	D	F	I	J	K	L	M	N
E	E	A	B	C	D	F	I	J	K	L	M	N
A	A	E	F	I	J	B	C	D	M	N	K	L
B	B	F	A	K	L	E	M	N	I	J	C	D
C	C	I	L	A	K	N	E	M	J	F	D	B
D	D	J	K	L	A	M	N	E	F	I	B	C
F	F	B	E	M	N	A	K	L	C	D	I	J
I	I	C	N	E	M	L	A	K	D	B	J	F
J	J	D	M	N	E	K	L	A	B	C	F	I
K	K	M	J	F	I	D	B	C	N	E	L	A
L	L	N	I	J	F	C	D	B	E	M	A	K
M	M	K	D	B	C	J	F	I	L	A	N	E
N	N	L	C	B	J	F	A	K	E	M		

The inverse of the elements $\mathrm{C}, \mathrm{D}, \mathrm{J}, \mathrm{L}, \mathrm{N}$ will be,I, J, K, M, D
I, J, D, M, K
I, J, M, D, K
I, J, D, K, M

No, the answer is incorrect.
Score: 0
Accepted Answers:
I, J, D, K, M
8) It is given that the
set $A \equiv\left\{E, P, P^{2}, Q, P Q, P^{2} Q, R, P R, P^{2} R, Q R, P Q R, P^{2} Q R\right\}$ forms a group, and they also
satisfy $P^{3}=Q^{2}=R^{2}=E ; Q P=P R ; R Q=Q R ; R P=P Q R ; R=P^{2} Q P$. Identify the conjugacy classes of this group.

$$
\begin{aligned}
& \{E\},\{Q, R, Q R\},\{P, P Q, P R, P Q R\},\left\{P^{2}, P^{2} Q, P^{2} R, P^{2} Q R\right\} \\
& \{E\},\{Q, R, P Q, P R\},\{P, Q R, P Q R\},\left\{P^{2}, P^{2} Q, P^{2} R, P^{2} Q R\right\} \\
& \{E\},\{Q, P, Q R\},\{P, P Q, P R, P Q R\},\left\{P^{2}, P^{2} Q, P^{2} R, P^{2} Q R\right\} \\
& \{E\},\{P, R, Q R\},\{Q, P Q, P R, P Q R\},\left\{P^{2}, P^{2} Q, P^{2} R, P^{2} Q R\right\}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\{E\},\{Q, R, Q R\},\{P, P Q, P R, P Q R\},\left\{P^{2}, P^{2} Q, P^{2} R, P^{2} Q R\right\}$
9) Identify the total number of possible cycle structures the symmetric group S_{6} can have
6

No, the answer is incorrect.
Score: 0
Accepted Answers:
11
10) What is the number of left cosets of C_{8} in S_{8} ?

1 point
$8!$
$7!$
$6!$
5020
No, the answer is incorrect.
Score: 0
Accepted Answers:
7 !

Previous Page

