Courses " Theory of groups for physics applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 11 - Week
10

Lecture SLides
Week10-
Assignment10-
Solutions

Week 11

Week 12

No, the answer is incorrect.
Score: 0
Accepted Answers
0
4) For a $2 p$ electron (with spin $\frac{1}{2}$), what are the possible values m_{j} can take?

1 point
$-\frac{3}{2}, \frac{3}{2}$
$-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$
$-\frac{1}{2}, \frac{1}{2}$

- None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
$-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$
5) The Special Orthogonal group of rotations in 3 dimensions is

1 pointNeither connected nor simply connectedSimply connected but not connectedBoth connected and simply connectedConnected but not simply connected
No, the answer is incorrect.
Score: 0
Accepted Answers:
Connected but not simply connected
6) In some specific representation where J_{z} is diagonal, we can represent J^{2} by a matrix with 1 point dimension of (where $J^{2}|j, m\rangle=j(j+1) \hbar^{2}|j, m\rangle$)

$$
\begin{aligned}
& (2 j+1) \times(2 j+1) \\
& (2 j-1) \times(2 j-1) \\
& 2 j \times 2 j \\
& j \times j
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$(2 j+1) \times(2 j+1)$
7) The infinitesimal generator of the Lorentz boost along z axis in 4 dimensional spacetime 1 point can be represented by,

$$
\left.\begin{array}{l}
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
0
\end{array} \begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), ~
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$
8) The dimension of the Lorentz group in 4 dimensional spacetime is

No, the answer is incorrect.
Score: 0
Accepted Answers:
6
9) Algebra of Lorentz group in 4 dimension can be written as

1 point
$S O(2)_{A} \otimes S O(2)_{B}$
$S U(2)_{A} \otimes U(1)_{B}$
$S U(2)_{A} \otimes S U(2)_{B}$
$S U(3)_{A} \otimes S U(3)_{B}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$S U(2)_{A} \otimes S U(2)_{B}$
10)Evaluate the following commutator, $\left[K_{0 x}, J_{y z}\right]$ where $K_{0 i}$ and $J_{j k}$ are the boosts along 1 point and the rotation about the $i^{\text {th }}$ axis respectively.
$i K_{0 y}$
$i K_{0 x}$
$i K_{0 z}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
0

Previous Page
End

