Unit 9 - Week-8

Course outline

How to access the portal?

Week-1

Week-2
Week 3

Week 4

Week 5
Week 6
Week 7

Week-8
CryptographyRSA Algorithm-I

CryptographyRSA AlgorithmII

Quantum
Cryptography-I
Quantum
Cryptography-II
Experimental
Aspects of
Quantum
Computing - I
Experimental
Aspects of
Quantum
Computing - II
Quiz: Week 8
Assignment 8
Week 8 -
Assignment 8
Solutions

Week 8 - Assignment 8

The due date for submitting this assignment has passed. Due on 2017-09-20, 23:59 IST As per our records you have not submitted this assignment.

In the following questions, ONLY ONE answer is correct. Choose the most appropriate one. (1X10=10 Marks)

1) Euler's Totient function $\Phi(1200)$ is 1 point

- 280
- 300
- 320
- 380

No, the answer is incorrect.
Score: 0
Accepted Answers:
320
2) Inverse of 5 modulo 101 is 1 point

○
$5^{99}(\bmod 101)$
$5^{100}(\bmod 101)$
$5^{102}(\bmod 101)$
none
No, the answer is incorrect.
Score: 0
Accepted Answers:
$5^{99}(\bmod 101)$
3) Solution of $5 x=31 \bmod 101$ is

1 point
27

- 42

68

- 87

No, the answer is incorrect.
Score: 0
Accepted Answers:
87
4) The set of equations $2 x=5(\bmod 7)$ and $3 x=4 \bmod 8$ has the solution

1 point
$24 \bmod 56$
$20 \bmod 56$
both (A) and (B)
none

No, the answer is incorrect.
Score: 0

Accepted Answers:

$20 \bmod 56$
5) In RSA algorithm with $N=323$, which of the following is acceptable as an encryption key e?
18
16
13
9
No, the answer is incorrect.
Score: 0
Accepted Answers:
13
6) In an RSA encryption with the public key ($\mathrm{N}=187, \mathrm{e}=7$), what is the private key d for decrypting the message?

80

- 11

No, the answer is incorrect.
Score: 0
Accepted Answers:
23
7) Let p and q be two prime numbers $p=137$ and $q=131$ so that the number $N=p q=17947$. If $\mathbf{1}$ point RSA encryption we choose $e=3$, the decryption key d is

5893

- 5982
- 11787
- 11965

No, the answer is incorrect.
Score: 0

Accepted Answers:

11787
8) In BB-84 protocol, assuming the presence of Eve in the channel and further assuming that 1 point Alice, Bob and Eve randomly select a horizontal/vertical or diagonal basis for their measurements, the fraction of cases (on an average) where Alice's and Bob's bits would agree, before they have compared their bases is

5/8

- $1 / 2$
-3/8
- $3 / 16$

No, the answer is incorrect.
Score: 0
Accepted Answers:
5/8
9) In an NMR quantum computer the molecule used has nuclei of

1 point

2 Flourine, 5 Carbon
2 Fluorine, 5 protons
5 Carbon, 2 protons
5 Fluorine, 2 Carbon
No, the answer is incorrect.
Score: 0

Accepted Answers:

5 Fluorine, 2 Carbon
10Alice and Bob are using B-92 protocol for communication. Alice encodes her bit 0 as $|0\rangle$ and 1 pcint bit 1 as $|+\rangle=(|0\rangle+|1\rangle) / \sqrt{ } 2$. The two bases that Alice uses are designated as basis number 0 and 1 respectively. Bob tosses a coin and if he gets a head, he measures the received state in the computational basis (labelled basis 0) and if he gets a tail he measures it in the diagonal basis (labelle basis 1). The result of Bob's measurement is publicly announced as $|+\rangle|-\rangle|1\rangle|0\rangle--|1\rangle|+\rangle|-\rangle|+\rangle--$ $|1\rangle|+\rangle|+\rangle|1\rangle--|-\rangle|-\rangle|0\rangle|+\rangle$ (the dashes in the above string are for reading clarity only). The secret code they establish in the process is

No, the answer is incorrect.
Score: 0
Accepted Answers:
01101100

In the following questions, ONE or MORE answer(s) is (are correct). Choose all the appropriate ones. (2X2=4 Marks)

11)n BB-84 protocol

2 points
\square Alice sends original bit string to Bob over a public (classical) channel.
\square Alice sends original bit string to Bob over a quantum channel
\square Comparison of bases of Alice and Bob occurs over a quantum channel
\square Comparison of bases of Alice and Bob occurs over a public channel
No, the answer is incorrect.
Score: 0

Accepted Answers:

Alice sends original bit string to Bob over a quantum channel
Comparison of bases of Alice and Bob occurs over a public channel
12)Which of the following statements is (are) true about practical realization of a quantum $\mathbf{2}$ points computer?
\square Trapping of ions is done by application of electrostatic field only
\square For an quantum computer to be realized, a set of single qubit and two qubit gates must be implemented
\square In an NMR computer, the initial state is thermally populated
\square According to Di Vincenzo's additional criterion, flying qubits must be faithfully transmitted between specified locations

No, the answer is incorrect.
Score: 0

Accepted Answers:

For an quantum computer to be realized, a set of single qubit and two qubit gates must be implemented In an NMR computer, the initial state is thermally populated
According to Di Vincenzo's additional criterion, flying qubits must be faithfully transmitted between specifit locations

Previous Page

In association with

Funded by
Government of India
Ministry of Human Resource Development

Powered by

